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ABSTRACT 
 
The Sequence Dependent Machine Setup 
Problem (MSP), a class of difficult problems in 
combinatorial optimization that is representative of 
a large number of important scientific and 
engineering problems, has been attracting much 
attention in recent times. In this study, literature 
and historical reviews of the MSP were carried 
out. Some recent developments were reviewed 
while possible future research directions were 
also highlighted. 
 

(Keywords: MSP, machine set up problem, traveling 
salesman problem, combinatorial optimization, 

engineering principals) 
 
 
INTRODUCTION 
 
The sequence dependent Machine Setup Problem 
(MSP) is the problem of determining an optimal 
sequence that a set of N operations will be 
performed by a general purpose facility in order to 
minimize the total cost or time of re-setting the 
facility. The setup time is defined as the time 
intervals between the finishing of a job and the 
beginning of the next job. In a single machine 
scheduling problem, with all jobs j=1,2,3….,N 
having the same ready time (i.e. a static 
scheduling environment) and no sequence-
dependent setup times, the maximum completion 
time or the makespan Cmax  is independent of the 
sequence and equal to the sum of the processing 
times of the N jobs. However, in many realistic 
problems there are sequence dependent setup 
times and in such situations Cmax is a function of 
the schedule.  
 
The scheduling problem of optimizing the 
makespan or Cmax on a single machine with 
sequence-dependent machine setup times Sij 
(setup time if job j is processed immediately after 
job i) is the single Machine Setup Problem. Given 
N parts and a processor, an MSP algorithm finds 

the order (a sequence of the N parts) in which 
each part will pass through the processor or the 
processor will pass through each only once, so 
that Cmax is minimized.   
 
Note that MSP’s rendition as a processor passing 
through the N parts (stations) is popularly 
interpreted as the Traveling Salesman Problem 
(TSP). The TSP can be stated thus “Given N 
cities and the distance or cost between each pair 
of cities, a salesman starting in one city wishes to 
visit each of N-1 other cities once and only once 
and return to the starting point. In what order 
should he visit the cities to minimize the total 
distance traveled?”  (See Deı˘neko et al., 2006; 
Gutin and Punnen, 2002; Lawler et al., 1985; 
Kahng and Reda, 2004; Balas and Simonetti, 
2001; Charles–Owaba, 2001; Dantzig, 1954; and 
Little et al., 1963).   
 
When Sij=Sji the problem is a special case, the 
Symmetric TSP (STSP).  However, the Machine 
Setup Problem (MSP) is actually the equivalence 
of the more general Asymmetric TSP (ATSP), 
thus the MSP is really the scheduling term for the 
TSP (see Pinedo, 1995; Charles-Owaba, 2001). 
Therefore the terms MSP and TSP will be 
interchangeably used in this paper. 
 
The Asymmetric TSPs or MSPs cases have been 
shown to be more difficult to solve than their 
symmetric equivalent with respect to both 
optimization and approximation (Johnson et al., 
2002; Zhang 2004; Oladokun, 2006). Also, most 
of the works reported in the literature deal with 
the STSP and are mostly referred to as TSP (see 
Gutin and Punnen, 2002; Applegate et al., 2004; 
Walshaw, 2002). There have been indeed very 
few studies on the MSP or the ATSP (Kwon et 
al., 2005) reported in the literature. 
 
Presently, the major difficulty in the use of 
existing algorithms arises from computing time 
requirements. The time requirement of published 
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methods increases exponentially with the problem 
size. Most large problem instances solved to 
optimality have been solved, using super 
computers or massively parallel computer 
processors. For instance, the largest instance of 
the TSP solved to optimality is the 24,978 Sweden 
cities carried out on a cluster of 96 Intel Xeon 2.8 
GHz dual-processor machines requiring an 
equivalent estimated time of 91.9 CPU years of a 
single Intel Xeon 2.8 GHz processor. The 
computation started in March 2003 and finished in 
May 2004 (Applegate, 2004). 
 
Unfortunately, super computing and massively 
parallel computing are often not available for 
industrial applications, where interest in MSP 
algorithms is fast growing (Charles–Owaba, 2001; 
Charles–Owaba, 2002; Rajkumar and Narendran, 
1996; Radin, 1998).   
 
Implicit enumeration and heuristics are the 
traditional solution approaches. The former are 
inefficient, therefore impractical for industrial 
applications, while the later are efficient but many 
lack effectiveness. For instance there are 2.4 x 
1018 and 1.5 x1025 possible solutions for a 20 
parts problem and 25 parts problem respectively.  
 
IBM built the 280.6 teraflop Blue Gene/L supper 
computer which could perform up to 280.6 trillion 
calculations per second, using the complete 
enumeration algorithm.  It would take this machine 
2 days to find an optimal schedule for a 20 parts 
problem and 400 centuries for 25 parts problem! 
Hence, other more constructive approaches, 
which do not search through the entire set, are the 
basis of most TSP algorithms. 
 
 
HISTORICAL BACKGROUND 
 
The MSP (TSP) and its solution procedures have 
continued to provide useful test grounds for many 
combinatorial optimization approaches. Classical 
local optimization techniques (see Rossman, 
1958; Applegate et al., 1999; Riera-Ledesma, 
2005; Walshaw, 2002; Walshaw 2001) as well as 
many of the more recent variants on local 
optimization, such as simulated annealing (Tian 
and Yang, 1993), tabu search (Kolohan and 
Liang, 2000), neural networks (Potvin, 1996) and 
genetic algorithms have all been applied to this 
problem, which for decades has continued to 
attract the interests of researchers. This section is 
a brief historical background of the TSP. 

Although a problem statement posed by Karl 
Menger on February 5, 1930, at a mathematical 
colloquium in Vienna, is regarded as a precursor 
of the TSP, it was Hassle Whitney, in 1934, who 
posed the traveling salesman problem in a 
seminar at Princeton University (Flood, 1956). 
 
A 1949 work, (Robinson, 1949), with an algorithm 
for solving a variant of the assignment problem is 
one of the earliest references that use the term 
"traveling salesman problem" in the context of 
mathematical optimization. However, a 
breakthrough in solution methods for the TSP 
came in 1954, when Dantzig et al. (1954) applied 
the simplex method (designed by George Dantzig 
in 1947) to an instance with 49 cities by solving 
the TSP with linear programming.  
 
There were several recorded contributions to the 
TSP in 1955. Heller (1955) discussed linear 
systems for the TSP polytope, and some 
neighbor relations for the asymmetric TSP 
polytope. Also Kuhn, (1955) announced a 
complete description of the 5-city asymmetric 
TSP polytope. Morton and Land (1955) 
presented a linear programming approach to the 
TSP, alongside the capacitated vehicle routing 
problem. Furthermore, Robacker (1955) reported 
manual computational tests of some 9 cities 
instances using the Dantzig-Fulkerson-Johnson 
method, with average computational times of 
about 3 hours. This time became the benchmark 
for the next few years of computational work on 
the TSP.  
 
In 1956, M.M. Flood discussed some heuristic 
methods for obtaining good tours, including the 
nearest-neighbor algorithm and 2-opt (Flood, 
1956) while Kruskal, (1956) drew attention to the 
similarity between the TSP and the minimum-
length spanning trees problem. The year 1957 
was a quiet one with a contribution from Barachet 
describing an enumeration scheme for computing 
near-optimal tours (Barachet, 1957). 
 
The year 1958 witnessed several contributions to 
the TSP archives. Croes (1958) proposed a 
variant of 3-opt together with an enumeration 
scheme for computing an optimal tour. He solved 
the Dantzig-Fulkerson-Johnson 49-city example 
in 70 hours by hand. He also solved several of 
the Robacker examples in an average time of 25 
minutes per example.  A similar contribution 
(Bock, 1958) describes a 3-opt algorithm together 
with an enumeration scheme for computing an 
optimal tour. The author tested his algorithm on 
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some 10-city instance using an IBM 650 
computer.   
 
By 1958, work related to the TSP had become 
serious research to attract Ph.D. students. A 
notable work was a Ph.D. thesis (Eastman, 1958) 
where a branch-and-bound algorithm using the 
assignment problem to obtain lower bounds was 
described. The algorithm was tested on examples 
having up to 10 cities. Also that same year, 
Rossman and Twery (1958) solved a 13-city 
instance using an implicit enumeration while a 
step-by-step application of the Dantzig-Fulkerson-
Johnson algorithm was also given for Barachet's 
10-city example. There were at least five 
publications on the TSP in 1960. Bellman (1960) 
showed the TSP as a combinatorial problem that 
can be solved via dynamic programming.  
 
In Miller et al. (1960), an integer programming 
formulation of the TSP and its computational 
results of solving several small problems using 
Gomory's cutting-plane algorithm was reported. 
Lambert (1960) solved a 5-city example of the 
TSP using Gomory cutting planes. Dacey, (1960) 
reported a heuristic, whose solutions were on 
average 4.8 percent longer than the optimal 
solutions. 
 
TSP in 1960 achieved national prominence in the 
United States of America when Procter & Gamble 
used it as the basis of a promotional context. 
Prizes up to $10,000.00 were offered for 
identifying the most correct links in a particular 33-
city problem. A  TSP researcher, Gerald 
Thompson of Carnegie Mellon University won the 
prize (Applegate et al 2007). 
 
In 1961, Müuller–Merbach proposed an algorithm 
for the asymmetric TSP; he illustrated it on a 7-
city example. Ackoff et al. (1961) gave a good 
survey of the computational work on the TSP that 
was carried out in the 1950's. 
 
By 1962, when the computer was becoming a 
useful tool in exploring the TSP, the dynamic 
programming approach gained attention. 
Gonzales solved instances with up to 10 cities 
using dynamic programming on an IBM 1620 
computer (Gonzales, 1962).  Similarly, Held and 
Karp (1962) described a dynamic programming 
algorithm for solving small instances and for 
finding approximate solutions to larger instances.  
 
Using an IBM 7090 computer their exact algorithm 
solved 13-city instances while the approximation 

algorithm found the optimal solution to the 42-city 
Dantzig-Fulkerson-Johnson example on two out 
of five trials, and was also tested on a new 48-
city instance. 
 
Little et al. (1963) coined the term branch-and-
bound. Their algorithm was implemented on an 
IBM 7090 computer and they gave some 
interesting computational tests including the 
solution of a 25-city problem that was in the Held 
and Karp test set. Their most cited success is the 
solution of a set of 30-city asymmetric TSPs (or 
MSP) having random edge lengths. In an 
important paper (Lin, 1965); a heuristic method 
for the TSP was published. The author defined k-
optimal tours, and gave an efficient way to 
implement 3-opt, extending the work of Croes 
(1958) with computational results given for 
instances with up to 105 cities. 
 
The year 1966 was another fruitful one for the 
TSP in terms of published works. Roberts and 
Flores (1966) described an enumerative heuristic 
and obtained a tour for Karg and Thompson's 57-
city example, having cost equal to the best tour 
found by Karg and Thompson. Also, in a D.Sc. 
thesis at Washington University, St. Louis, 
Shapiro (1966) describes an algorithm similar to 
Eastman's branch-and-bound algorithm. 
 
Gomory (1966) gave a very nice description of 
the methods contained in Dantzig et al. (1954), 
Held and Karp (1962), and Little et al. (1963). 
Similarly, in Lawler and Wood (1966) descriptions 
of the branch-and-bound algorithms of Eastman 
(1952) and Little et al. (1963) were given. The 
authors suggested the use of minimum spanning 
trees as a lower bound in a branch-and-bound 
algorithm for the TSP.  
 
Bellmore and Nemhauser (1968) presented an 
extensive survey of algorithms for the TSP. They 
suggested dynamic programming for TSP 
problems with 13 cities or less, Shapiro’s branch-
and-bound algorithm for larger problems up to 
about 70-100 and Shen Lin's `3-opt' algorithm for 
problems that cannot be handled by Shapiro's 
algorithm. Raymond (1969) is an extension to 
Karg and Thompson’s (1964) heuristic for the 
TSP where computational results were reported 
for instances having up to 57 cities.   
 
Held and Karp in their 1970 paper introduced the 
1-tree relaxation of the TSP and the idea of using 
node weights to improve the bound given by the 
optimal 1-tree. Their computational results were 
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easily the best reported up to that time. Another 
notable work on the TSP in the 70s is the S. 
Hong, Ph.D. Thesis, at The Johns Hopkins 
University in 1972 written under the supervision of 
M. Bellmore, and the work was the most 
significant computational contribution to the linear 
programming approach to the TSP since the 
original paper of Dantzig et al. (1959). The Hong’s 
algorithm (Hong, 1972) had most of the 
ingredients of the current generation of linear-
programming based algorithms for the TSP. He 
used a dual LP algorithm for solving the linear-
programming relaxations; he also used the Ford-
Fulkerson max-flow algorithm to find violated 
subtour inequalities.  
 
The algorithm of Held and Karp (1971) was the 
basis of some major publications in 1974. In one 
case, Hansen and Krarup (1974) tested their 
version of Held-Karp (1971) on the 57-city 
instance of Karg and Thompson (1964) and a set 
of instances having random edge lengths. In 1976 
a linear programming package written by Land 
and Powell was used to implement a branch-and-
cut algorithm using subtour inequalities. 
Computational results for the 42-city instance of 
Dantzig et al (1959), the 48-city instance of Held 
and Karp (1962) and the 57-city instance of Karg 
and Thompson (1964) were given. 
 
Smith and Thompson, (1977) presented some 
improvements to the Held-Karp algorithm tested 
their methods on examples which included the 57-
city instance of Karg and Thompson (1964) and a 
set of ten 60-city random Eucliean instances. In 
1979, Land described a cutting-plane algorithm for 
the TSP. The decade ended with a survey on 
algorithms for the TSP and the asymmetric TSP 
(Buckard, 1979).  
 
A very impressive work heralded the 1980s. 
Crowder and Padberg (1980) gave the solution of 
a 318-city instance described in Lin and 
Kernighan (1973). This 318-city instance would 
remain until 1987 as the largest TSP solved. This 
work improved on the earlier cutting-plane 
algorithm in Padberg and Hong (1980).  Also, in 
1980, Grötschel gave the solution of a 120-city 
instance by means of a cutting-plane algorithm, 
where subtour inequalities were detected and 
added by hand to the linear programming 
relaxation.  
 
In 1982, Volgenant and Jonker described a 
variation of the Held-Karp algorithm, together with 
computational results for a number of small 

instances. A very important work of 1985 is a 
book (Lawler et al., 1985) containing several 
articles on different aspects of the TSP as an 
optimization problem. Padberg and Rinaldi 
(1987) solved a 532-city problem using the so-
called branch and cut method. 
 
The works in the 1990’s were mostly application 
in nature. A large number of 
scientific/engineering problems and applications 
such as vehicle routing, parts manufacturing and 
assembly, electronic board manufacturing, space 
exploration, oil exploration, and production job 
scheduling, etc. have been modeled as the MSP 
or some variant of the TSP (see Al-Haboub-
Mohamad and Selim, 1993; Clarker and Ryan, 
1989; Crama et al., 2002;  Ferreir, 1995; Foulds 
and Hamacher, 1993; G¨unther et al., 1998; 
Keuthen, 2003;  Kolohan and Liang, 2000; 
Mitrovic-Minic  and Krishnamurti 2006). 
  
 
FUTURE DIRECTIONS 
 
The re-examination and the development of 
further theoretical basis for these solution 
approaches have been identified as one way to 
develop more efficient and effective solution 
algorithms for the MSP (Charles–Owaba, 2001; 
Charles–Owaba 2002; Walshaw, 2002).  
 
Recently, a Set Sequencing Algorithm was 
proposed as a basis for the MSP solution 
approaches. In the Set Sequencing paradigm 
(Charles–Owaba, 2001; Charles–Owaba, 2002) a 
complete tour is viewed as comprising a set of N 
TSP matrix elements (links). Set Sequencing is 
defined as the transformation of a known 
sequence (Si-1) to a new sequence (Si) by 
feasibly replacing a subset of its links (Lr) with 
equal number (M) of candidate links (Lc) using a 
recursive function: 
        
Va(Si) =Va(Si-1) +∆(Lr, Lc, M)  
 
where Va(Si) and Va(Si-1) are the respective 
sequence values and ∆(Lr, Lc, M) is the exact 
amount  Va(Si) is changed by the replacement 
operation. 
 
Consequently, an alternative TSP (MSP) model, 
Minimize ∆(Lr, Lc, M), has been defined and 
shown to be equivalent to the traditional MSP 
model, Minimize Va(Si). 
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It has also been established that just as an 
optimal sequence S* exits from among [N!] 
sequences, an optimal set Lc* also exits from 
among [N(N-1)] MSP matrix elements. A 
systematic procedure, the set sequencing 
procedure SSP, for scanning for Lc* was also 
developed (Charles–Owaba, 2001). In other 
words, an optimal solution (tour) of the N-station 
cyclic Asymmetric Traveling Salesman problem 
(or the Cyclic MSP) was viewed as consisting of 
(N) elements (optimal elements) of the distance 
matrix. Considering lower bound for elements a 
theoretical basis for identifying and eliminating 
non-optimal elements was suggested. This 
concept of element elimination was then used to 
define optimality conditions.  
 
The approach for handling the subtours 
elimination constraints of the TSP integer LP is 
another area for re-examination. Researchers 
have identified the issue of feasibility or subtour 
elimination as very crucial in the formulation of the 
TSP or similar permutation sequence problem. 
“No one has any difficulty understanding subtours, 
but constraints to prevent them are less obvious,” 
says Radin L.R in (Radin, 1998). Methodologies 
or theoretical basis for handling these constraints 
within the context of algorithm development has 
been the basis of many popular works on the 
TSP. A classical example of this approach is in 
Crowder and Paderg (1980) where a linear 
programming relaxation was adopted such that if 
the integral solution found by this search is not a 
tour, then the subtour inequalities violated by the 
solution are added to the relaxation and resolved.   
 
Grötschel (1980) used a cutting-plane algorithm, 
where cuts involving subtour inequalities were 
detected and added by hand to the linear 
programming relaxation.  Hong (1972) used a 
dual LP algorithm for solving the linear-
programming relaxations, the Ford-Fulkerson 
max-flow algorithm, for finding violated subtour 
inequalities and a branch-and-bound scheme, 
which includes the addition of subtour inequalities 
at the nodes of the branch-and-bound tree. Such 
algorithms are now known as "branch-and-cut".  
The problem of dealing with subtour occurrences 
algorithm development has been a major one in 
the in the MSP studies in the literature.  
 
For example, Oladokun (2006) adopted a 
schematic and graphical framework to 
characterize and explain the changes taking place 
during the transformation of an input sequence 
into a new sequence, a transition process was 

defined and characterised for the purpose 
identifying feasible links on the problems matrix. 
This approach was integrated into the SSA to 
yield a new solution algorithm called the subtour-
free SSA. 
 
 
MULTI CRITERIA SCHEDULING   
 
One of the computational characteristics of 
iterative algorithms-such the SSA, Lin-Kernighan 
and the k-opt worth noting is that they generates 
many high quality sequences or schedules during 
the iteration process.  Presently this intermediate 
information appears wasted.  One area where 
this observation will be useful is when dealing 
with bi-criteria or multi-objective scheduling 
problems.  In such cases these iterative 
algorithms may be part of an integrated solution 
procedure to generate high quality input 
sequences to be used as test solutions on the 
various criteria. In our view we suggest that the 
TSP research be approached from this more 
practical multi-objective scheduling perspective. 
 
 
COMPOSITE ALGORITHMS AND PARALLEL 
COMPUTING  
 
The performance of a TSP algorithm may be 
improved by combining it with some other 
procedure. For example in (Walshaw, 2001) the 
multilevel paradigm was applied to the TSP, in 
this attempt the Lin-Kernighan (Lin and 
Kernighan, 1973) algorithm was used as a 
refining procedure required after the multilevel 
coarsening process with the resulting combined 
procedure producing improved solutions  
(Walshaw, 2001; Walshaw, 2002). We are of the 
view that the concept of composite algorithms is 
another area that holds some attraction and is 
will continue to yield good results.  
 
The adaptation of some of the existing algorithms 
for parallel computing  over networked systems  
of personal computers have been shown to 
greatly expand the scope and capability of such 
algorithms (Applegate 2004, Oladokun 2006). 
This approach, we believe, should form the basis 
of further researches. 
 
 
CONCLUSIONS 
 
A brief overview of the well known Sequence 
Dependent Machine Setup Problem also called 
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the Traveling Salesman Problem has been 
presented in this paper. The Problem has a wide 
range of applications and this has sustained 
continued interest on this NP hard problem. This 
problem will continue to stimulate interests due to 
its practical values in scheduling and theoretical 
relevance in discrete optimization studies. 
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