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ABSTRACT 
 
There has been a renewed interest in developing 
more flexible statistical distributions in recent 
decades. A major milestone in the methods for 
generating statistical distributions is undoubtedly 
the system of differential equation approach. 
There is a recent renewed interest in generating 
skewed distributions. In this research, a new four 
parameter lifetime distribution which extends the 
Lomax distribution is introduced by compounding 
the Lomax distribution with the complementary 
generalized transmuted Poisson family of 
distributions. The probability density function and 
cumulative distribution function as well as some 
basic statistical properties of the new distribution, 
such as moments, reliability function, hazard 
function, quantile function, residual life function, 
entropy and the order statistics were derived. 
Some plots of the distribution shows that it is a 
positively skewed distribution. The maximum 
likelihood estimation method is used to estimate 
the parameters of the new distribution. A 
simulation study to assess the performance of the 
parameters of the newly developed distribution 
was provided with an application to real life data 
to assess its potentiality. The result shows that the 
proposed distribution provides better fit than some 
generalizations of the Lomax. 
 

(Keywords: lifetime distribution, maximum likelihood 
estimation, Lomax distribution, hazard function, order 

statistics) 

 
 
INTRODUCTION 
 
There have been different life data models that 
illustrate the patterns of failure data in 
engineering, environmental, financial, medical, 
and biological sciences such as exponential, 
gamma and Weibull. The need for flexibility of 
these distributions arises and it has led to the 

development of many new distributions by 
modification or generalization of existing 
distributions. There are a number of classical 
distributions that have been used over the past 
decades for modeling real-life data but there are 
needs for extending distributions in applicable 
areas as lifetime analysis and reliability 
(Lemonte, et al., 2013). Over the years, many 
researchers have made modifications to existing 
distributions through various methods such as 
transforming the original distributions, increasing 
the number of parameters already existing or by 
the proper mix of distributions. 
 
In many lifetime studies, the Pareto type-II which 
is a special case of a compound gamma 
distribution called Lomax distribution, is 
commonly used (Baharith, et al., 2019). Lomax 
distribution which was first introduced by Lomax 
(1954) for modeling business failure data, has a 
wide application in reliability analysis, life testing 
problems, information theory, business, 
economics, queuing problems, actuarial 
modeling, and biological sciences (Liu, et al., 
2019). It is an alternative to common lifetime 
distributions such as exponential or gamma and 
used when the population is assumed to be 
heavy tailed (Pak, et al., 2018).  
 
In modeling failure rates, there have been 
literatures that proposed and studied distributions 
that captures the decreasing failure rates. Such 
failure rates arise from situations such as infant 
mortality in humans and over working or miss use 
of an engineering component (Adamidis, et al, 
1998). In lifetime testing and reliability studies, 
the exponential distribution was used in modeling 
problems related to failure rates (Flores, et al, 
2013). Barreto-Souza and Cribari-Neto (2009) 
generalized the distribution proposed by Kuz 
(2007) by including a power parameter, which 
considered the maximum lifetimes of the random 
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variables from the Exponential-Poisson 
distribution.  
 
The power series distribution was considered 
when the maximum number of competing causes 
is assumed leading to a complementary risk 
scenario. Furthermore, Flores, et. al. (2013) 
proposed a new family of distribution based on a 
complementary risk problem in the presence of 
latent risk assuming a power series. The concept 
assumed that there is no information about which 
factor was responsible for the component failure 
but only the maximum lifetime value among all 
risks is observed instead of the minimum lifetime 
value among all risks as in Chahkandi (2009) and 
Morais (2011). The distribution was called 
Complementary Exponential Power series, which 
is a counterpart of the Exponential Power series. 
The complementary risk problems arise in several 
areas such as Medical, industrial and finances as 
well. 
 

Based on the Complementary Exponential Power 
series, Alizadeh, et al, (2017) proposed the 
Complementary Generalized transmuted 
Poisson–G family of distributions which is a wider 
Class of continuous distribution. It was proposed 
to have a flexible two-parameter generator to fit 
real data from several fields. Some special 
models such as Complementary Generalized 
Transmuted Poisson Weibull and 
Complementary Generalized Transmuted 
Poisson Lindley were presented, and their 
density and hazard rates plotted and observed. 
 
According to Alizadeh et al. (2017), the 
cumulative distribution function (cdf) of the 
Complementary Generalized Transmuted 
Poisson-G family for any continuous probability 
distribution, is defined as: 
 
 
 

 

       (1) 

 
Differentiating the cdf in (1), the corresponding pdf is given as: 
  

      (2) 

 

Where and  are shape parameters,  ,  and  are the 

probability density function, cumulative distribution function and corresponding reliability function 

respectively of the baseline distribution depending on a parameter vector , where 

. 

 
 
The Complementary Generalized Transmuted Poisson-Lomax Distribution 
 
We obtain the cdf of the Complementary Generalized Transmuted Poisson Lomax distribution by 
inserting Equation (1) and Equation (2) which yields: 
 

     (3) 

 
The corresponding pdf of the cdf in Equation (4) is given by: 
 

  (4) 

 

Where and , are shape parameters, and  is the scale parameter. Therefore, 

Equations (5) and (6) are the cdf and pdf of the Complementary Generalized Transmuted Poisson Lomax 
distribution. 
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Expansion of the Distribution Function of CGTPL Distribution 
 
According to Alizadeh, et al. (2017), the pdf of Complementary Generalized Transmuted Poisson Lomax 
distribution in Equation (6) can be expressed as a linear expression of Exponentiated Lomax distribution, 
and thus reduces to: 
 

         (5) 

 

Where  with power parameter  , and 

 

       (6) 

 
The associated cdf can be expressed by: 
 

         (7) 

 

Where  

 
 
Exhibited Properties of the Newly Developed Distribution 
 
i) Shapes of the CGTPL PDF, CDF, Reliability and Hazard function. 
   

 
Figure 1: The pdf Plot of the CGTPL Distribution at Different Parameter Values. 

 

 
Figure 2: The cdf Plot of the CGTPL Distribution at Different Parameter Values. 
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Figure 3: The Reliability Function Plot of the CGTPL Distribution at Different Parameter Values. 

 

 
Figure 4: The Hazard Function Plot of the CGTPL Distribution at Different Parameter Values. 

 
ii) Moments 
 
Moments can be described as constants of a population which are used to study the various 
characteristics of a random variable such characteristics as the mean, the variance, skewness and 
kurtosis of a distribution. 
 
The rth moment of X, where X denotes a continuous random variable, is given by: 
 

        (8) 

 

Where,  is the pdf of the Complementary Generalized Transmuted Poisson Lomax distribution given 

in Equation (6). 
  
The rth ordinary moment above can be derived using (7). thus, we have: 
 

        (9) 

 
Recalling from Equation (7), Equation (11) is further expressed by: 
 

            (10) 
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Where , which numerically can 

be computed by: 
 

        (11) 

 

Where u follows uniform  and  is the quantile function of the baseline distribution which is the 

Lomax distribution given by: 
 

         (12) 

 
iii) Mean 
 

The mean of the CGTPLD can be obtained, by setting  in the  moment of the distribution in 

Equation (11), which will yield the following: 
 

        (13) 

 

The second moment is obtain from the  moment, when r =2 in Equation (11). This yields the following: 

  

        (14) 

 
iv) Variance 
 

The  central moment or the moment about the mean of X, can be obtained by; 

 

      (15) 

 
The Variance is obtained when n =2 in the central moment. Thus, 
 

         (16) 

 

       (17) 

 
 v) The Cumulants 
 

The cumulants  of X can be obtained directly from the ordinary moment by: 

 

         (18) 

 
The first, second, third and fourth cumulants are given as:  
 

, ,  and 

 

, respectively. 

 
The Skewess and Kurtosis of X are the third and fourth standardized cumulants given by: 
 

Skewness and  Kurtosis , respectively.  
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vi) Reliability Function 
 
Reliability function can be described as the probability of the non-failure occurring before time t. The 
reliability function of the CGTPLD is given by: 
 

          (19) 

 

       (20)  

 
vii) Hazard Function 
 
The instant rate of failure at a given time t, is the hazard function. The hazard function of the CGTPLD is 
given by: 
 

           (21) 

 

     (22) 

 

    (23) 

 
 
vii) Cumulative Hazard Function 
 

         (24) 

 

      (25) 

 
 
viii) Quantile Function 
 

The quantile function of the CGTPLD is derived by inverting . Let  where u 

follows uniform  According to Alizadeh et al (2017), the random variable  having 

Equation (6) as its density has its quantile function by: 
 

      (26) 

 
Therefore, the quantile function of CGTPLD is: 
 

     (27)  
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ESTIMATION 
 
In this section, the parameters of the CGTPL distribution based on a complete sample is estimated using 

the maximum likelihood estimation method. Let  be a sample of size  independently and 

identically distributed random variables from CGTPLD with unknown parameters  and  previously 

defined. The pdf of the CGTPLD is given as: 
 

   (28) 

 
The likelihood function is given by: 
 

     (29) 

 

 

            (30) 
 

Differentiating  with respect to  and  respectively gives: 

 

            (31)   
 

            (32) 
 

       (33) 

 

    

            (34)  
 
Simulation Study 
 
An evaluation of the behavior of the Maximum Likelihood estimators of the parameters of the 
Complementary Generalized Transmuted Poisson Lomax distribution from a Monte Carlo simulation is 

carried out using R software. Random samples of sizes are generated 

over 1,000 replicates from the CGTPL distribution. The Bias and the Root Mean Square Errors, are given 
in Table 1.   
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Table 1: Monte Carlo Simulation for the Estimates of the CGTPL Distribution. 
 

n Actual values Bias RMSE 

            
25 1.5 2 1 0.5 0.732 0.850 0.535 -0.172 2.805 2.785 1.061 0.281 

 2 1.5 1 0.5 1.334 1.030 0.578 -0.170 5.470 2.765 1.072 0.278 

 1 1 1 0.5 0.594 0.124 0.568 -0.141 7.516 0.964 1.140 0.274 

 1 3 1.5 0.5 0.715 1.136 0.104 -0.151 8.445 3.662 0.992 0.279 

50 1.5 2 1 0.5 0.436 0.448 0.586 -0.148 1.824 2.015 1.126 0.277 

 2 1.5 1 0.5 1.009 0.447 0.687 -0.139 4.218 1.812 1.148 0.265 

 1 1 1 0.5 0.150 0.104 0.620 -0.120 0.605 0.777 1.289 0.279 

 1 3 1.5 0.5 0.210 0.908 0.172 -0.131 0.766 2.821 1.209 0.284 

75 1.5 2 1 0.5 0.408 0.361 0.616 -0.127 2.00 1.848 1.216 0.283 

 2 1.5 1 0.5 0.880 0.359 0.679 -0.139 3.948 1.697 1.189 0.275 

 1 1 1 0.5 0.108 0.070 0.583 -0.113 0.530 0.667 1.238 0.284 

 1 3 1.5 0.5 0.204 0.705 0.203 -0.115 1.032 2.431 1.183 0.285 

100 1.5 2 1 0.5 0.230 0.298 0.604 -0.130 1.258 1.660 1.237 0.280 

 2 1.5 1 0.5 0.788 0.190 0.704 -0.120 3.533 1.398 1.209 0.266 

 1 1 1 0.5 0.058 0.084 0.533 -0.114 0.410 0.596 1.217 0.285 

 1 3 1.5 0.5 0.084 0.770 0.182 -0.110 0.441 2.253 1.217 0.284 

500 1.5 2 1 0.5 0.015 0.144 0.455 -0.112 0.415 1.032 0.959 0.262 

 2 1.5 1 0.5 0.143 0.026 0.612 -0.108 0.919 0.859 1.072 0.256 

 1 1 1 0.5 0.001 0.131 0.280 -0.113 0.240 0.489 0.942 0.270 

 1 3 1.5 0.5 0.004 0.716 0.026 -0.082 0.256 1.755 0.944 0.260 

 
Application 
 
The data set applied to the Complementary Generalized Transmuted Poisson Lomax distribution is the 
data set given by Lee and Wang (2003) on the remission times (in months) of a random sample of 128 
bladder cancer patients. The data set is given as follows: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 
0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 
5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 
7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 
1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 
3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 
 
The descriptive statistics of the data set on the remission times of a random sample of 128 bladder 
cancer patients is given in Table 2. 
 
 

Table 2: Descriptive Statistics of 128 Bladder Cancer Patients. 
 

Mean Median Variance SD Skewness Kurtosis 1stQu. 3rdQu. Min. Max. 

9.366 6.396 110.425 10.508 3.287 15.483 3.348 11.838 0.08 79.05 

 
 
The parameter estimation for the Complementary Generalized Transmuted Poisson Lomax distribution 
was carried out using the maximum likelihood estimation method. The estimated parameters with their 
standard errors in parenthesis, are given in Table 3. 
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Table 3: MLEs and their Standard Errors (in parentheses) of 128 Bladder Cancer Patients. 
 

Distribution Estimates 

CGTPLD* 
 

(8.2796) 
 

(0.0004) 
 

(3.4183) 
 

(0.148) 

 

Ext. PLD 
 

(1.1424) 
 

(155.3534) 
 

(242.1564) 

  

TE-Lomax 
 

(0.2342) 
 

(0.017) 
 

(3.7577) 
 

(0.4674) 

 

McLomax 
 

(3.364) 
 

(15.818) 
 

(0.243) 
 

(25.029) 
 

(3.079) 

KumGLomax 
 

(2.4882) 
 

(15.0625) 
 

(0.2683) 
 

(13.9729) 

 

 
The performance of the distribution based on some model criterion selection based on the 128 bladder 
cancer patient data is given in Table 4.  
 
 

Table 4: Measures of AIC, BIC HQIC and CAIC. 
 

Distribution -logL AIC HQIC CAIC BIC 

CGTPLD* 409.56 827.13 831.76 827.45 838.53 

Ext. PLD 413.84 831.67 837.14 833.86 842.22 

TE-Lomax 410.43 828.87 833.51 829.13 840.28 

McLomax 409.91 829.82 835.62 830.14 844.09 

KumGLomax 409.95 827.90 832.54 828.23 839.31 

 

For an ordered random sample, , from Complementary Generalized Transmuted Poisson 

Lomax distribution, where the parameters and are unknown, the Kolmogorov–Smirnov , 

Cramér von Mises  and Anderson and Darling , was used. 

 
The goodness of fit statistic for the Complementary Generalized Transmute Poisson Lomax distribution in 
comparison with other models are given in Table 5. 
 
 

Table 5: Goodness-of-Fit Tests. 
 

Distribution 
   

CGTPLD* 0.0344 0.0168 0.1085 

Ext. PLD 0.0989 0.2268 1.4511 

TE-Lomax 0.0399 0.0314 0.2275 

McLomax 0.0391 0.0254 0.1685 

KumGLomax 0.0389 0.0236 0.1614 

 
 
The values in Table 4 indicate that the Complementary Generalized Transmuted Poisson Lomax 
distribution performs better than the Extended Poisson Lomax distribution, Transmuted Exponentiated 
Lomax, the McDonald Lomax and the Kumaraswamy-Generalized Lomax Distribution, since it has the 
minimum value for AIC, CAIC, HQIC and BIC. 
 

The values in Table 4 indicate that the test statistics ,  and , have the smallest values for the 

data set under the Complementary Generalized Transmuted Poisson Lomax distribution with regards to 
the other models. 
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Figure 5 shows a graphical representation of the model fit to the bladder cancer patient data. The 
Empirical and theoretical density plot (top left), Empirical and theoretical CDF (bottom left), Quantile-
Quantile (Q-Q) plot (top right) and the Probability-Probability (P-P) plot.  
 
 

 
 

Figure 5: A Graphical Representation of the Model Fit to the Bladder Cancer Patient Data. 
 
 
CONCLUSION 
 
In this research, a mixture model of  distributions 
was developed  to model the heterogeneous 
survival time data. The maximum likelihood 
estimators of the parameters of the parametric 
mixture model were obtained we have proposed 
the Complementary Generalized Transmuted 
Poisson Lomax distribution.  
 
We derived and studied some conventional 
properties of the distribution such as moments, 
reliability function, hazard function, quantile 
function, residual life function, entropy, and the 
order statistics. The parameters of the distribution 
were estimated using the method of Maximum 
Likelihood estimation and an application of the 
distribution to real life data set. The values of the 
log likelihood were in favor of the proposed model. 
Moreover, the AIC and BIC were also computed 
and both of them supported the proposed model. 
Indicating that the newly developed model is 

much more flexible and has a better fit than the 
other distributions considered. 
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