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ABSTRACT 
 
When finite difference (FD) is applied to higher 
order partial derivatives, the derivation or 
computation of the expression is easily 
maneuverable for rectangular coordinates. But 
cylindrical counterparts suffer from expressional 
as well as computational complexity. Even with 
the rectangular derivatives, mathematical 
manipulations become clumsy with unequal 
resolutions. In this paper we mainly present 2D 
FD Laplacian expression in cylindrical system, 
application of which is also implemented and 
verified with standard computational 
electromagnetic problems. 
 

(Keywords: Laplace equation, 2D FD, cylindrical FD) 

 
 
INTRODUCTION 
 
Laplace equation has importance in determining 
capacitance of an electromagnetic system. 
System property determines voltage-current-
power-frequency requirements of the system 
which is vital for design context. Analysis for this 
sort of system in not new. Well established 
empirical mathematical expression of the system 
exists in rectangular coordinate or other for 
continuous case [1]-[9].  
 
The traditional more appropriately continuous 
approach uses variable separation method in 
conjunction with sinusoidal basis functions. The 
problems are two-fold using such technique: a) 
the solution is highly boundary condition 
dependent and every new boundary condition 
results  in different analytics (i.e., involvement of 
noncoherent computing) and b) presence of 
sinusoidal basis results undesired ringing 
phenomenon with finite harmonic components. 
 
Advent of powerful computer processors force us 
to think about all-too-familiar electromagnetic 

problems or derived complicated ones to solve by 
engaging the neoteric tool. Focus on Laplacian is 
vital for electromagnetic system property mainly 
for inductance and capacitance. But the 
computing is not one shot, instead two steps are 
essential: a) potential to field and b) field to 
capacitance or inductance. Given the intricacy of 
discrete mathematics, concentration has been on 
potential distribution. 
 
To date, cylindrical system Laplacian analytics 
involving finite difference are not available for 
robust computational electromagnetics. It is 
imperative that we engage the didactic tool for 
practical implication in the field. 
 
 
LAPLACIAN IN CYLINDRICAL SYSTEM 
 
Two-dimensional Laplacian is derived from its 
three-dimensional counterpart which in cylindrical 
system is given by [3]-[9]: 
 

0
2

2

2

2

2

2

2

2 =



+




+




+





z

ffff






  

 
Certainly the above equation is for charge, flux, 
or source free region. Problem geometry dictates 
the type of component’s presence and three 
possibilities are associated with as follows: 
 
Presence of   and   components:  
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Presence of   and z  components: 
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Presence of z  and   components:  
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DERIVATION OF THE FINITE DIFFERENCE 
EQUATIONS 
 
There are three 2D equations for Laplacian in 
cylindrical system. Since each equation is 
different from the other two, unified derivation 
does not hold true instead treatment on each is 
required separately which we pay attention to in 
this section. 
 
Treating   and   components: In cylindrical 

coordinate system continuous function ),( f  we 

seek in a source free region from 
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21    and 
21   . The ),( f  may 

represent any physical quantity, flux or potential 
depending on the problem. 
 
 

 
Figure 1 depicts the linkage between the 
continuous and discrete base coordinates of 

),( f  due to 2D finite difference. The 

discretization of base coordinate variables 
happens by  = m  and  = n  where m  or n  

is purely integers. Although 0 starting of   or   is 

used, either one can be negative too causing  m  

or n  to be likewise. The   direction is chosen 

downward despite upward being in conventional 
coordinate system. This convention is just to be 
consistent with widely followed computer 
coordinate system. 
 

Discrete function ],[ nmf  or sampled ),( nmf  is 

the discrete counterpart of ),( f . Finite 

difference links of the related derivatives 
(considering forward divided difference) are as 
follows [3]-[6]: 
 
for the first order   component: 
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for the second order   component: 
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for the second order   component: 
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Inserting the last three derivatives into Laplace 
equation and simplifying for ),( nmf  yield FD 

equation of the Laplacian in 2D cylindrical 
system: 
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The FD counterpart of ),( f  along with the 

neighboring samples takes following rhombic 
shape: 
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Alternately, the lattice of FD is arranged by 
relative nodes as follows: 
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Let us assign the nodes with weight factors 
likewise by: 
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Figure 1:  Link Between the 
Continuous and Discrete Base 

Coordinates of ),( f  due to FD. 
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(i.e., center, left, right, top, and bottom by a , 
1w , 

2w , 
3w , and 

4w , respectively). The weight factors 

are then obtained from the FD equation as: 
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The a  is 1 for all above. If denominators of weight 

factor are pushed to be with ),( nmf , the a  will be 

non-unity. The three coordinates are chosen in 
cyclic order and any two concern discrete 
variables m  and n  respectively. 

 
Treating   and z  components: The resolution 

modification is needed which is  = m  and 

znz =  in conjunction with: 
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Since   is frozen (say  = c ), consequently we 

obtain ])()[(2

),1()(),1()(
),(

222

22

+

+++−
=

cz

nmfznmfz
nmf  

         
)1,()()1,()( 2222 ++− nmfcnmfc 
  

where the weight factors are derived as follows: 
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Treating z  and   components: Discretization 

now requires subject to zmz =  and  = n  along 

with  
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thereby resulting: 
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the necessary weight factors are the following: 
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EMPERICAL SOLUTION 
 
By taking some specific finite difference lattice 
now we introduce how the solution will be 
obtained. Two examples are demonstrated by 
considering band matrix approach [3]. Of the 
examples, one is symmetric and the other is 
asymmetric. 
 
Solution obtaining for the potential function is not 
coherent because asymmetric or irregular 
geometry of electromagnetic structure poses a 
challenge owing to lattice complexity. In the 
following we assume that boundary samples are 
b ’s and unknown functionals are f ’s with integer 

subscripts. If B  and C  are band and column 

matrices respectively, the solution for ),( f  

samples or ),( nmf  is simply CB 1− . Question 

marks are put where FD rhombic lattice does not 
hold true. Also when many coefficients are to be 
handled in matrix form, manual typing becomes 
clumsy that is why computer assistance is sought 
for some matrices with different font symbols for 
example –w2 for 

2w , a for a , etc. 
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Symmetric 3x3 Unknowns 
 

),( nmf  sample lattice structure:  
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Band matrix, B : 
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

























+

+

+

+

7462

84

94101

52

111

3342

23

13121

0

bwbw
bw

bwbw
bw

bw
bwbw

bw
bwbw

 

 
Asymmetric 6x4 unknowns: 
 

),( nmf  sample lattice structure:  
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Band matrix, B : It is shown in figure 6. 
 
Column matrix, C : 
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where T  is the transpose operator. In order to 
determine a generic band we may inspect the 
matrix how the entries evolve.  
 

For a symmetric band a  assumes the diagonal 

position. The 
1w  and 

2w  occupy first sub and 

super diagonals respectively. Every after two 
1w  

or 
2w ’s one 0 takes place. The second sub or 

super diagonal is all zeroes. The third sub and 
super diagonals are filled by 

3w  and 
4w  

respectively. Of course all w ’s are negative 

regardless of the diagonal type. The rest entries 
are simply zeroes. 
 
In the other counterpart a  assumes similar 

diagonal position too. The 
1w  and 

2w  occupy first 

sub and super diagonals respectively. The 0 
appearance is every after three 

1w  or 
2w . The 

second and third sub or super diagonals are all 
zeroes. The fourth sub and super diagonals are 
filled by 

3w  and 
4w  respectively. Similar 

negativity of the weight factor holds true besides 
zero appearance. 
 
The boundary entries are labeled as b ’s which 

can assume any type of boundary values 
whether constant or variable. For function based 

b ’s, the sample values must be computed first. 

For example ),(  cf =  indicates constancy on   

but changing on   more appropriately )(b . For 

instance, sinusoidal variation on   makes the 

)(b  available as sin . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS ON APPLICATION 
 
To test suitability of the finite difference we have 
chosen Figure 2 shown electromagnetic system. 
The geometric dimension of  ,  , or z  indicates 

which two components are to be considered. Let 
us see the following examples. 
 
 
 

y

0

Figure 2:  An 
Electromagnetic System in 

Cylindrical Coordinate. 
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Components  - : 

If z >>  , we consider  -  based finite 

difference. For instance, cylindrical surface in 
figure 2 contains Vcmf 10),10( =  while all other 

boundary potentials are at 0 V . The ),( f  

solution is needed subject to radius cm10 , first 

cylindrical quarter i.e.   variation 090 , cm5.2= , 

and 05.22= . 

 
Geometry of the structure stretches over 

cm100    and 0900   translating to discrete 

intervals 40 m  and 40  n  respectively. The 

),( nmf  samples take the shape of 3x3 symmetric 

lattice as addressed earlier.  
 
It has to be pointed out that each weight factor is 
two-dimensional function on m  and n  too thereby 

yielding 
1w  counterpart as: 
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The other three weight factors follow similar trend 
and are computed as 
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hence the ),( f  sample solution is computed as: 
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How do we read the solution out from last matrix? 
Figure 1 mentioned resolution on  -  is the 

answer. For instance fourth element in the third 

row refers to )45,5.7( 0cmf  =7.2535V , so does 

)5.67,5.7( 0cmf  =6.105V  for the fourth element in 

the fourth row, and so on. 
 

Components  - z : 

In Figure 2 when   and z  are comparable i.e. 

 >0.1| z | or | z |>0.1  , the analysis is conducted 

for a particular  . For example some strip on the 

cylindrical surface defined by cmz 100   and 
00 4530   on  = cm5 . 

 
Components z -  : 

With   constant, z -   variations evolve as a 

plane in figure 2. The plane may assume any   

between 0 and 360 degrees depending on the 
problem. For example, some plane is defined by 

cmz 100   and cm50    on 045= . 

 
 
 
 
 
 
 
 
 
 
 
PRACTICAL APPLICATIONS 
 
We cite two applications of the 2D FD in 
cylindrical system in the following.  
 
 
Application 1 
 
Suppose a manufacturer intends to add doping 
into battery electrode. The objective of such 
study can be for cost saving or performance 
improvement. This can be best conducted by 
determining the electrical potential distribution 
through the carbon rod of the battery. In figure 3 
tip of the carbon rod holds a voltage V5.1 , the 

length of the rod is cm5  and the diameter is 

mm5.1 . The question is how far along the rod 

from the battery cap significant voltage persists 
and doping can be applied accordingly in order to 
improve the battery performance.  
 
We create a potential profile for every section 
within the rod by making the use of  -  based 

finite difference. Existence of significant equi-
potential lines indicates the zone for doping.  
 
Considering battery axis as the z axis, tip of the 
battery is on  −  plane, cmz 25.1= , and 

mm375.0= , earlier quoted 33  lattice structure 

Figure 3:  Isometric View 
of a Battery. 
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is chosen. Figure 4 depicts the potential profile 
over mm5.10    and cmz 50  . As pronounced 

in the graph, battery tip potential 1.5 V  reduces to 

0.2V  within 1.1 mm  from the tip. The rod over 

cmzcm 51.1   holds less than 0.2V  which 

facilitates the manufacturer’s doping decision. 

 
 
Application 2 
 
The FD can be applied to compute the resistance 
and capacitance of any cylindrical electromagnetic 
object. Generalized expressions for resistance 

and capacitance are given by 


=
SdE

V
R


0  and 

0V

SdE
C


=


 respectively [3]-[4]. For a given 

electromagnetic system, the related symbology is 
as follows: R  is resistance, C  is capacitance,   

is the electrode conductivity,   is the dielectric 

permittivity, 
0V  is applied potential difference 

across the plate, E  is the electric field developed 

across dielectric, and Sd  is the elementary 

surface area mostly for electrode. 
 
 

 
 

Figure 5 shows the isometric view of a capacitor. 
Expression for elementary surface in cylindrical 
system is given by 

zaddadzdadzdSd   ++= . The electrode 

lies on the cylindrical surface defined by c= , 

21   , and 
21 zzz   where c  is the cylinder 

radius and 
0V  is the voltage applied on the 

electrode with axial voltage at 0V . 

 
Earlier quoted  -  based FD provides potential 

distribution for a fixed  
0V  from which electric field 

is obtained by E
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where  = m  and  = n . With all these 

 SdE   reduces to 

))(( 1212  −−− zz   −+ )],(),1([ nmfnmfm . The 

rationale for selecting  -  basis is elementary 

surface and electric flux’s perpendicularity to 
each other. 
 

By inspection the  SdE   is only m  directed 

difference. For the computation we may choose 
any lattice e.g. 3x3, 5x5, etc. and calculate the m  

directed difference. The double summation 
indicates sum of all elements. Knowing  ,  , 

and 
0V , one can easily get the resistance or 

capacitance calculated. 
 
 
CONCLUSION 
 
Finite difference computing theory on 2D 
cylindrical system is developed for Laplacian. 
Although handling 2D finite difference, three 
distinct Laplacian components are related with 
the formulation, each of which is analyzed. 
Application of the theory is presented by taking 
some electromagnetic example. As far as higher 
processor speed evolvement is concerned, the 
tool is useful in spite of being computationally 
intensive. 
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Figure 5:  Isometric View 
of a Capacitor. 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –11– 
http://www.akamaiuniversity.us/PJST.htm                                             Volume 19.  Number 2.  November 2018 (Fall) 

 
REFERENCES 
 
1. Rothwell, E.J. and M.J. Cloud. 2001. 

Electromagnetics. CRC Press LLC: Boca Raton, 
FL. 
 

2. Jones, D.S. 1987. Methods in Electromagnetic 
Wave Propagation, Volume 2. Clarendon Press: 
Oxford, UK. 
 

3. Sadiku, M.N. 1995. Elements of Electromagnetics. 
Second Edition. Oxford University Press: New 
York, NY. 
 

4. Nuruzzaman, M. 2016. "3D FD on Laplacian for 
Computational Electromagnetics in MATLAB”, 
CreateSpace, South Carolina. 
 

5. Monk, P. 2003. Finite Element Methods for 
Maxwell’s Equations. Oxford University Press: 
Oxford, UK. 
 

6. Nuruzzaman, M. 2013. "Finite Difference 
Fundamentals in MATLAB”. CreateSpace: South 
Carolina. 
 

7. Kong, J.A. 1986. Electromagnetic Wave Theory. 
John Wiley & Sons, New York, NY. 
 

8. Schwarz, S.E. 1990. Electromagnetics for 
Engineers. Saunders College Publishing: 
Philadelphia, PA. 
 

9. Vanderlinde, J. 1993. Classical Electromagnetic 
Theory. John Wiley & Sons, Inc., New York, NY. 
 

 

SUGGESTED CITATION  
 
Nuruzzaman, M. 2018. “Cylindrical Laplacian on 
2D FD for Computational Electromagnetics”. 
Pacific Journal of Science and Technology. 
19(2):5-11. 
 

 
 

  

Pacific Journal of Science and Technology 

Figure 6:  Band Matrix for 6x4 Asymmetric Lattice. 
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