An Orthogonal Based Self-Starting Numerical Integrator for Third Order IVPs
in ODEs.

Rotimi Oluwasegun Folaranmi, M.SC.™; Raphael Babatunde Adeniyi, Ph.D.*; and
Emmanuel Oluseye Adeyefa, Ph.D.?

! Department of Mathematics, University of llorin, P.M.B 1515, llorin, Kwara State, Nigeria.
2 Department of Mathematics, Federal University Oye-Ekiti, P.M.B. 373, Oye-EKkiti, Ekiti State, Nigeria.

E-mail: rotsuccess@yahoo.com’

adeniyibr@yahoo.com

adeoluman@yahoo.com

ABSTRACT

This work focuses on construction of continuous
approximation schemes for the numerical solution
of third order initial value problems in ordinary
differential equations. A set of orthogonal
polynomials valid in interval [-1, 1] with respect to

X
weight function W(X) =1+§ was constructed

and exploited as basis function and, we derived
from the continuous scheme an implicit hybrid
block method through collocation at some
selected points. Analysis of the proposed method
shows that it is zero-stable, consistent and hence
convergent. On comparison, the method
performed favorably well in terms of
computational time, function evaluation per step,
cost of implementation and accuracy.

(Keywords: approximation schemes, numerical
solutions, third order, ordinary differential equations,
ODE)

INTRODUCTION

Mathematical modelling  which leads to
formulation of different equations is an important
tool in solving Ordinary Differential Equations
(ODEs) problems resulting from different fields
such as the physical sciences, engineering
technology, management, economics, and
medicine.

In the physical sciences, the mathematical
formulation of the study of rate of decomposition
of radioactive substances, the problem of
determining the motion of planets, satellites,
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rockets, and projectiles, and the conduction of
heat through a medium do give rise to ODEs.

This work considers approximate methods for the
solution of the general third order Initial Value
Problems of the form:

Y= 00V YL YY) Y (X)) =y k=012
(1)

where X, is the initial point, Y is the solution at

X,, fis continuous within the interval of
integration.

Problems involving Equation (1) were extensively
discussed in Lambert (1973), Fatunla (1988),
Awoyemi (1992) in the past by first reducing them
to system of first order differential equations and
then solve the resulting equations by any of the
existing numerical methods. The disadvantage of
which leads to greater computational cost.

However, direct method for solving (1) which
were more efficient than the method of reduction
to system of first order ordinary differential
equations have been studied by many scholars
including: Adeyefa et al (2014), Anake (2012),
Adesanya et al (2012), Awoyemi et al (2011),
Jator (2007) to mention a few.

The direct methods are self-starting methods
which are formulated in terms of linear multistep
methods called block methods. The block method
provides the traditional advantage of one-step
methods e.g., Runge-Kutta methods, of being
self-starting and permitting easy change of step
length (Lambert, 1973). Another important
feature of the block approach is that all the
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discrete schemes are of uniform order and are
obtained from a single continuous formula in
contrast to the non-self starting predictor-corrector
approach.

This self-starting method was used by Anake
(2013) to derive a class of one-step hybrid
methods for the numerical solution of second
order ordinary differential equation with power
series as the basis function. Lately, Adeyefa
(2014) adopted this same approach but employed
Chebyshev Polynomial to develop a set of
algorithms. The numerical solutions obtained by
these researchers are desirable as their methods
at many points recovered the exact solutions. In
what follows, we shall adopt block method
approach to formulate a third order numerical
scheme by developing orthogonal polynomials
which are employed as basis function to derive a
block method that provides direct solution to (1)

CONSTRUCTION OF ORTHOGONAL BASIS
FUNCTION

We set out here to derive orthogonal polynomials

. . . X
using the weight function W(X) =1+ 5

The procedure demands choosing the orthogonal
polynomial g, (X) defined as:

.(0=3CcO @

Where Cr'S are the orthogonal coefficients and

g, (X) satisfies the inner product:

< (0,0, 09 > = [W)d,, (g, ()dx=0,
m#n (3)

For the purpose of constructing the basis function,
we use additional property:

thatq, (1) =1 4
Forr=01in (2),

0o (X) = CéO)
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From (4),

(@D =Cp” =1

Hence,
G () =1
Forr=11in (2),
6, (x) =Cg” +CPx ®)

By definition (4), (5) gives:
C +C? =1 (6)

and

O
<0Q,,0, >:J(1+ Ej do (X)a, (x)dx
0 (7)

which implies:

5 2
ch” +§cl<1> =0 ®)

Solving (6) and (8) and substituting the outcomes
into (5), we have:

0,() = - 15x-8) ©

Whenr =2in (2),
d,(X)=C? +CPx + C{?x? (10)
By definition (4), (10) gives:

cP+cP+Cc? =1 (12)
and

<0, >= IL1+§Jqo(x)q2(x)dx =0
” (12)

which implies:
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also,

<00, > = [1+ gqu(x)%(x)dx (14)

which gives:

37w, ¥em g
168 84

Solving (11), (13), (15) and substituting the
resulting values into (10), we have:

q,(X) = 5% (370x* —380x + 67) (16)

When n =3in (2),
0, ()=CP +C¥x + COx*+ CPx® (17)
By definition (4), (17) gives:

cP+cP+cP+cP =1 (18)

<Go:G >= | [1+§jqo(x)q3<x)dx =0 (19)

which implies:

%339 +§cl<3> +%c§3> +%c§3> -0

<0,,03 > = _[(1+gqu(x)q3(x)dx =0 (12)

This leads to:

3—7(:1“" +9C§S> +§c§3> =0 (22)
10%) 84 140

o, X
<0z, 03 > = I(1+ quz (X)g;(x)dx =0
0

(23)

Solving (18),(20) and (22) and substituting the
resulting values into (17), we obtain:

s (X) :%1 (10675x> —16290x> + 6690x — 584)

In the same vein, (,(X),Nn >4 are developed.

The next three polynomials which are used in
this work are listed hereunder.

d,(x) :%61 (332766x" —674072x° +440874x° —100428x + 5221)

s (X) __1 (2173710x° —5489736x* + 4942812x> —1884904x* +275513x — 9496)

7899

1
72509
+34913052x% —3565896X + 87419)

qe(x):
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(73254324x° —221626152x° + 254436138x"* —137426374x°
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FORMULATION OF THE PROPOSED METHOD
(PM)

The procedure to derive the continuous hybrid
methods shall be considered in this section. Here,
we set out by approximating the analytical solution
of problem (i) with a polynomial of the form:

r+s-1

y(x) = Zanqn(x)

where (,(X) is the orthogonal polynomials

derived, a,'s are the real unknown parameters to

be determined, r is the number of collocation
points, s is the number of interpolation points. We
shall now employ the set of polynomials to
formulate a continuous scheme through which
numerical solutions of initial value problems in
ordinary differential equations are obtained.

We consider here equation (25) to obtain the
solution of (1) in the sub-interval [X,, X+ ] Of [, b]
taking our basis function to be an orthogonal

2X —2x, — ph
ph

varies as the method to be derived.

function where X = and p

Here, we are formulating a two-step method (i.e.,
p = 2(2bY, r and s are points of collocation and
interpolation,  respectively). The procedure

involves interpolating  (25) at X=X,

. 1
|=0,§,1 and collocating the third order

derivative of (25) at X = X i= O,%,l,Z yields

n+i !

a system of 7 equations each of degree six (i.e.,
r+s-1=6) as follows:

| .23 43 34230 11042 20577 400121
7 3 491 31 11 40
, _18 4363 5537 20555 12236 61811 o
7 513 176 168 25 31 |[% ‘
, _8 67 584 5221 9496 87419 || & hef, ..,
7 57 491 4361 7899 72509 || a, h*f, .
o 0 0 64050 30346 258619 .., a |=| ht, (26)
491 11 7 .
o o 0 64050 96673 155489 oo, || % Yi
491 45 7 5 Yeiss
o 0 0 64050 20403 191480 56859 || o Ver
491 22 51 5
o o 0 64050 80448 o 85491
491 89 8

Equation (26) is solved by using MATLAB software to obtain the values of the unknown parameters

a,'s=0(1)6, as follows:
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37 sp 2025 443 o % 5, 18 81 173

a, = +— +——h +—=Y, —— +—
°" 3158 * 2215 k+§ 3496 22133 2T 6 20 yk+§ 60 7
54 .. 331 , 553 | 4 90 ., 1316 315 = 2093
alz_—h k T 5aon 1+—h k+l+—h k2t = Yo = 5, Y 1t a Yk
6493 3676 k- 3215 20431 555 74 "k 1110
25 \o. , 35 s 599 101 171 513 .,
- k+1

a, =—— +———h°f, ., +— _—
*“48149 * 10183 'l 867 7 21250 2 370 e 740 ykf 740
3 psg BT pop o P opp o 3t peg

a. = - R,
10352 X 12566 ki 8464 " 15037

3

a, = 18 h3 1Ek - 25 hsf 1 _i ’ k+1 ihs k+2
129337 101836 ke 31307 30677
a5:_L 3fk 12 ———h’f 1_ihsfk+1"'L ’ k+2
65333 48511 k5 20203 155797
= 3 pig 3 e 3 ps L fe., (27)

1

a, =— h*f, + 2 i +———h
242467 134704 «i 242467 404112

3

Substituting (27) into (25) yields a continuous implicit hybrid two —step method in the form :

y(X) = 6\{0 (t) yn + a} (t) yn+1 + al (t)yn+1 + h3 (ﬂo (t) yn + ﬁ& (t)yn+1 + ﬁl (t)ym—l + ﬂz (t) yn+2) (28)
where

a,(t) =3t* + 2t

@, () =2t +1)
3 2
1 2
al(t):E(St +5t+2)
ﬂo(t)zh{—itﬁ+it5—it‘br ! s 229, 47, 1 ] (29)
80 120 24 447 6480 3240 834

ﬂl(t) h( O po_ Ly Oy, 1 10 4 —ij
400 313 80 193 900 45 179
A =t-=r -t e le B Sy 2
80 60 16 6 405 810 516
5.0 h(l PN VR SR T tz_lt_lj
400 20 120 791 16571 648 774
X=X —h
and t= —"—
h

Evaluating equation (28) at x = X+, Yyields the discrete equation:
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n+=
3

ym2:5yn—9ym1+5yml+é¥%(—lofn+144f 1+305fm1+11fm2] (30)
3

. : 5
The scheme is of order P =4 and the error constantis C ., =———

11664

The first derivatives of continuous functions are given as:

o (t) == @+a

céa)z—%(m+g)

40)=%(m+gj
40

/%(ozzhz( 3 ~t°+
27
ﬂ1ﬂ) (200

it4+ —
2 6 746 3240 3240
sy tqr Jyy Ly 100, 4
121 20 285 450 45
t5——1-t4+13 L Egm 31)
12

1o, 1., 229 47 ] (31)

4+ =t +

‘(t) = h? + ==
AW 4 2 405 810

3
40
3 syttt e 131 — j

200 24 30 408 16200 648

B.(t)=h (

where the differentiation is w.r.t. the variable X The second derivatives of continuous function are given
as:

5

o,y (t) = =

a, (t) = Hz

. 3, 1., 1 1 229
t=h——ﬁ+—ﬁ+—ﬁ+——¢———J 32
A® [ 8 6 2 373 3240 (32)

Zzt4+~4£—t3—~gzt2 L —t+ 161
40 303 20 142 450

3., 1., 3, 112}

Ai(®)=h

‘W=hl -t —Zt3+ Sttt +
A 8 3 4 405

. 3 1 1
t)=hl —t*+=t°+
Fat) 40 6 10 204 16200

Pt

1 ¢ 131 )
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Equation (31) and (32) when evaluated at X, Xy:1/3, Xks1 @nd X respectively yields the following
discrete derivative schemes:
. 9 1 1 83 11 1
hy, +4y, —— += =h¥ —f +—f , +—f, , ——f 33
Y Yk > yk% 5 Yin (162 « ¥ 1800 k% 3240 ' 8100 ]( )

, 3 1 13 23 11 11
hy L +2Y =2y =SV = e f -+ .. | (34
d T TN [9720 © 675 x; 2430 ' 48600 “J( )

. 9 5 4 47 4 31 1
Y. —2Yy +§yk% _Eykﬂ =h ( 3240 fi +4—5 fk% +m fia 648 fMJ(%)

hv  —8y +20 _-t bl ST + f .+ f
Yiea =8+ 5Y, 1 =57y 270 * 600« 1080 " 2700 2

27 1 11 k+1=h3[ 13 . 79, 979 217 J(%)
2 -

3 3

91 571 49 1
e b
810 “ 1800 i 3240 4050

3

hzyﬁ -6y, +9yk+£ —3Yyu = h

3

_ Ly —pi Mg 49 18, 29
6yk+9yk+§ i =h (3240 " 450 fk+§ 405 fk+l+16200 fk*zj 59)

fk+2} (37)

h’y’

k+E
3

o 229 . 161, 112, 131 39
3240 X 450 ki 405 ¥ 16200 2

3

hzyll<I+l -6y, +9yk+£ -3y, =h

3

179 o71 2121 450
For Ll v ket T
810 1800 w5 1609 1349

hzy;+2 _6yk +9yk+£ _3yk+l = hs[ fk+2J(40)
3

Equations (30), (33)-(40)are solved using e=(e,.e)", d=(d,..d )’
Shampine and Watts (1969) block formula defined
as:

ym = (yn+1"'yn+r)T and

Ay, =hBF(y,)+ey, +hdf,
(42) F(Yn) = (Foraefo)"

According to (33)-(40), A, B, d and e are obtained

from Shampine Equation (41) as follows:
where A=(a;) , B=(b;) column vectors P a (“41)
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9 -5
291
2 2
3 1l v i10000 0
2 2
© S 5010000
Aol 2 2
27 M 5001000
2 2
9 -3 0000000
9 -3 0000100
9 -3 0000010
9 -3 0000001
8 61 11 5 0 0
45 162 810 4 -1 0
83 1 1 5 0 o
1800 3240 8100
23 1 11 2 00
675 2430 48600 E=|8 0 0
4 3 1 6 0 -1
45 810 648
79 979 217 6 0 0
B =
600 1080 2700 6 0 0
971 49 1 6 0 0
1800 3240 4050
49 13 29
450 405 16200
161 12 131
450 405 16200
51 2121 450
1800 1609 1349

(1 1 13 47 13 91 91 229 179Y
81 162 9720 3240 270 810 3240 3240 810

Substituting A, B ,D and E into (41), we obtain the explicit schemes:
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yk+;:yk+%hyk+%h2y;+%h3fk %Wf“;—%hﬁmjtﬁh
yk+l=yk+hy'k+%h2y|:+2—10h3fk+%h3fk+;+%oh3fk+1

Y., = Y, +2hy, +2h%y, +%h3 f +;—ih3fk+§ +§h3fk+1 +7i5h3 fe.s
yi'wé:hy;(+%h2y;+%h3fk+%h3fk+;—%30 3 k+1+%h3 -
y[Hl:hyl;+h2y;+%h3fk+215h3fk+;+2—10h3fk+1—6—;0h3fk+2

Ye., = hy, +2h%y, +%h3fk +2—2h3 fk% +%h3fk+l +2£5h3fk+2

y;é =h?y, +%h3fk +%h3fk+; —%hgfk+l+67i8h3fk+2
y;H:hzy;+2—14h3fk+i—gh3fk+;+%h3fkﬂ—$h3fk+2

) I 4 1
Yo = hzyk +§h3 f, +§h3fk+1 +§h3 frio

The block formulae are all of order, p=4 with the error constants:

c _[..® 1 1 78 1 1 28 1 1
P3| 7348320" 30240 1890  1049760'4320" 270’ 58320 720" 90

ANALYSIS OF THE METHOD

The basic properties of this method such as order,

3

k+2

(42)

T
} , respectively.

LLy(x):h] = Z[a,-y(xn + jh)=h°B, f(x, + jh)]

error constant, zero stability and consistency are
analyzed hereunder. Equation (xv) derived is a
discrete scheme belonging to the class of LMMs
of the form:

k
Z“J Ynij
=0

k
- thﬂj fn+i
j=0
(43)

Following Fatunla (1988) and Lambert (1973), we
define the local truncation error associated with
Equation (43) by the difference operator:
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(44)

Where y(X) is an arbitrary function,

continuously differentiable on [ a, b ]. Expanding
(44) in Taylor series about the point X, we
obtain the expression:

L[y(x);h]=C,y(x) + C,hy' (x) + C,h?*y" (x) +...
+C_.,hPPyP3(x)

p+3

Volume 17. Number 2. November 2016 (Fall)
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Wherethe C, , C,,C,...C
obtained as :

k
Co :Z“i

j=0

p--Cp.,y are

_Lsy
_2!,-=1Jaj

Co= JZan —4(q-1)(a- Z)Zﬂj“}

In the sense of Lambert (1973), Equation (44) is
of order P if:

C,=C,=C,=...C, =C,,, =0 and

Cos#0

The C,,; # 0 is called the error constant and
C

truncation error at the point X, .

pi3h Py P (x.) is the principal local

Zero Stability of the Method

The linear multistep method (43) is said to be
zero-stable if no root of the first characteristic

polynomial  p(R)has modulus greater than one

and if every root of modulus one has multiplicity
not greater than the order of the differential
equation.

To analyze the zero-stability of the method, we
present (42) in vector notation form of column

e=(e...e,) ., d =(dl...dr)T,

ymz(ym—l"'ym—r)T’ ( ) ( n+r)
and matrices A=(a;) , B=(b;).

vectors

Thus, Equation (42) forms the block formula
A’y =hBF(y,)+A'y, +hdf

The Pacific Journal of Science and Technology
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where h is a fixed mesh size within a block.

In line with (45) and block method (42):

0 ykJ%
AO = O 1 0 yk+l
0 1 yk+2
O yk—2
A= 0 1| Viu
0 Yy
7317 1
32400 58320 36450 fk%
s-| & 1 o |t
80 240
18 2 PR
25 5 75
61
14580 |( f,
1
d=| — |f,
20
[
5

The first characteristic polynomial of the block
hybrid method is given by:

p(R) = det(RA° — A) (46)
where

1 00 0 01
A°={0 1 0f|,A'=|0 0 1

0 0 1 0 01

Substituting A’ and A in Equation (45) and
solving for R, the values of R are obtained as
Oandl.

xgﬁ.arding to Fatunla (1988, 1991), the block
ethod Equation (42) are zero-stable, since from
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46), p(R)=0, satisfy ‘Rj‘ﬁl, j =1 and for

those roots with ‘RJ—‘ =1, the multiplicity does not

exceed three.

Consistency of the Method

The linear multistep method(43) is said to be
consistent if it has order P >1 and the first and
second characteristic polynomials which are

k -
p(R) = ZajR' and

i=0

defined as
k .

o(R)=D BR!
j=0

where R, the principal root satisfies the following
conditions:

k
M Y a; =0, p@)=p'@) =0, i

=0

P @) =3c()

The hybrid scheme (33) derived is of order

P =4>1 and it has been investigated to satisfy
conditions  (i)...(iii). Hence the scheme s
consistent.

Convergency of the Method

According to the theorem of Dabhlquist, the
necessary and sufficient condition for a LMM to be
convergent is to be consistent and zero stable.
Since the method satisfies the two conditions
hence it is convergent.

Numerical Examples

We consider here four test problems to illustrate
the method.
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Problem 1: (A constant coefficient homogeneous
problem)

y''+y'=0
y(0) =0, y'(0)=1,
y'(0)=2

Exact solution:
y(x) = 2(1— Cosx) + Sinx

Problem 2: (A constant coefficient non
homogeneous problem)

y'"'+4y'= X

y©0)=y'(0)=0, y"'(0) =1,
h=0.1,0<x<1

Exact solution:

3 1
X) = — (1—cos 2X) + = x?
y(x) 16( ) 3

Problem 3: (A variable coefficient singular
problem)

COSX ,, .
+-——=y"=sin xcos X
sin x
y(0)=1,y'(0) =-2,
y'(0)=0,h=0.1

Exact solution:

x?  sin?x
X)=1-2X+——

ye) 12 12

Problem 4: (A non-linear non- homogeneous
problem)

y'=y'2xy"+y'), y0)=1,
yO=3  yO=o0.
h=0.01

Exact solution:

1 2+ X
=1+=In| ——
v =L+ 5[ 2%
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Table 1: Comparison of the New Block Method and Anake Block Algorithm for Problem 1.

X Exact Solution Results of the PM Error Error in Anake
0.1 | 0.10982508609077662011 0.10982508608720526482 3.57135529x107*2 1.60880000x10~°
0.2 | 0.23853617511257795326 0.23853617521272132138 1.0014336812x10*° 1.03870000 %1078
0.3 | 0.38484722841012753581 0.38484722889856993877 4.8844240296 x107*° 2.95720000x10°°
0.4 | 0.54729635430288032607 0.54729635566304631116 1.36016598509 x 10 ~°° 2.31470000x%10°7
0.5 | 0.72426041482345756807 0.72426041775514166541 2.93168409734x107°° 4.54200000x% 10~
0.6 | 0.91397124357567876270 0.91397124900816441044 5.43248564774x107°° 1.47460000x10°°
0.7 |1.11453331266871420120 1.11453332176914982600 0.1004356248 x107°° 2.87340000x10°°
0.8 | 1.32394267220519191980 1.32394268638196401810 1.41767720983x107 4.68260000 x10°°
0.9 | 1.54010697308615447550 1.54010699398707376820 2.09009192927 x107°8 6.92170000x10°¢
1.0 | 1.76086637307161707180 1.76086640257681337610 2 95051963043 x 108 9.59740000x10°°

Table 2: Comparison of the New Block Method and Anake Block Algorithm for Problem 2.
X Exact Solution Results of the PM Error Error in
Anake
0.1 | 0.00498751665476719416 0.00498751664825035050 6.5168436600 x 1072 2.0952x10°%
0.2 | 0.01980106362445904698 0.01980106397185038989 —3.4739134291x107'° 1.6375x10°%
0.3 | 0.04399957220443531927 0.04399957422602327400 —2.02158795473x107°° 1.1154x107
0.4 | 0.07686749199740648358 0.07686749852682062271 —6.52941413913x107°° 9.8800x10""
0.5 1 0.11744331764972380299 0.11744333346408755609 —1.58143637531x107°%8 3.0406x10™%
0.6 | 0.16455792103562370419 0.16455795312358073792 —3.208795703373x10 7% 9.0126x10%
0.7 | 0.21688116070620482401 0.21688121834485580696 _5763865098295%10° | 1.6965x10™®
0.8 | 0.27297491043149163616 0.27297500505499946023 —9.462350782407 x10°8 2.6772x10%
0.9 | 0.33135039275495382287 0.33135053761054919072 _1.4485559536785x10° | 3.8135x10™®
1.0 | 0.39052753185258919756 0.39052774145323146804 _ 2.0960064227048x10°°" | 5.0596x10%
Table 3: Comparison of the New Block Method and Falade Thesis for Problem 3.
X Exact Solution Results of the PM Error Errorin
Falade

0.1 | 0.80000277407671840129 0.80000277407319636487 3.5220364200 x 10712 0.5789E-06

0.2 | 0.60004420808345354511 0.60004420800195996358 8.14935815300 x 10! 0.3806 E-05

0.3 | 0.40022231728790326238 0.40022231690635359165 3.815496707300x101° 0.1037 E-04

0.4 | 0.20069611288946522587 0.20069611174898726099 1.1404779648800 x10~°° 0.2341 E-04

0.5 | 0.00167926274450582156 0.00167926006910235206 2. 675403469498 x107%° 0.4126 E-04

0.6 | -0.1965684268968052676 -0.1965684322683223386 5.3715170710300 x107° 0.6591 E-04

0.7 | -0.3937513690458232942 -0.3937513787126569529 9.6668336586800 x10°° 0.9904 E-02

0.8 | -0.5895499800958870302 -0.5895499961306756554 1.6034788625200 <1078 0.1432 E-03

0.9 | -0.7836334206122119606 -0.7836334455776121717 2.4965400211060x107° | 0.2018 E-03

1.0 | -0.97567278485613093 -0.9756728214463478494 3.65902169166300x10°° | 0.7197 E-03
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Table 4: Comparison of the New Methods with Existing Method.

X Exact Solution Results of the PM Error Error in Olabode
0.21 1.10538844783849891010 | 1.10538844783837950530 1.194048000x107% | 3.157979012E —08
0.31 1.15625949779936003420 | 1.15625949779895135000 4.0868420000 %1072 | 9.636302289E — 08
0.41 1.20794636563521173500 | 1.20794636563419504550 1.0166895000x107*2 | 2.640700834E —07
0.51 1.26075331659316237260 | 1.26075331659102288900 2 1394836000102 | 6.260533061E —07
0.61 1.31502323709600082640 | 1.31502323709191724620 4.0835802000 x107*2 | 1.348230303E —06
0.71 1.37115320825901439260 | 1.37115320825166432330 7.3500693000x107*? | 2.698695479E —06
0.81 1.42961558811110818990 | 1.42961558809831614740 1.2792042500x10 71t | 7.814267388E — 06

CONCLUSION

The continuous implicit two-step hybrid method all
of order four have been developed by the
interpolation and collocation technique for the
approximation of the solution of initial value
problems in third order ordinary differential
equation.

The scheme is in the block form and consequently
they do not require other method (especially one-
step methods) in order to implement them.

The methods were applied to four problems, each
with its own peculiarity and the results thereby
obtained demonstrate their effectiveness and
accuracy viz-a-viz some other existing schemes
(Anake (2013), Awoyemi(2014)), as they perform
favorably well.
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