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ABSTRACT

We propose continuous two-step hybrid linear
multistep method (CTHLMM) through collocation
technique for direct integration of general second
order initial value problems. Our keen interest is to
construct a class of orthogonal polynomials with
recursive formula which shall produce the same
results as existing polynomials. The basic
properties of the method such as order, stability,
consistency and convergence are discussed. The
CTHLMM is implemented on four test problems
and on comparison with the exact solutions and
the existing method, efficiency and accuracy of
CTHLMM are established.

(Keyword: continuous two-step hybrid linear multistep
method, CTHLMM)

INTRODUCTION

We focus on formulation of a continuous hybrid
two-step linear multistep method (CHTLMM):

K k k
Zaiyn+i = h{zﬂi Foui +Z'Bi f”+W:|’
i=0 i=0 i=1

a =15 #0

for the numerical solution of second order initial
value problem (IVP):

y'(X) = (% y(X), y'(X)  Y(X) = Yo,
Y'(X) = Yo, P< X< .

where,

fiRXR™ 5> RT Yy R>RT X, XX
n = 2 and m is the dimension of the system.

end ’
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The desire for the solution of (1) is owing to its
occurrence in several areas of engineering,
management and science, such as celestial
mechanics, circuit theory, control theory,
chemical kinetics, and biology to mention but a
few. It is commonly reported that (1) is difficult to
solve or has no solution analytically hence the
need for numerical methods.

Researchers have developed several methods
with various techniques to directly obtain the
solution of (1). Among them are the linear
multistep methods (LMMs) (see Lambert and
Watson (1976), Henrici (1962), Stiefel, and Bettis
(1969)), multistep collocation methods (see
Carpentieri and Paternoster (2005), D’Ambrosio
et al. (2009), Coleman and Duxbury (2000)) and
multi-derivative methods (Twizell and Khaliq
(1984)).

The approach of reducing (1) to a system of first
order equation has also been reported in the
literature to increase the dimension of the
problem, lead to more computation work, waste a
lot of computer time and and human efforts (see
Lambert (1973), Awoyemi (1991, 1999), Fatunla
(1988), Jator (2010)).

To cater for this setback, Milne (1953) proposed
block method which was later developed into
algorithm by Rosser (1967) to implement (1)
directly. The approach has been widely used by
scholars. However, to derive all the
aforementioned methods and several others,
polynomials play a vital role. Notable among the
well-known polynomials are the power series,
Legendre polynomials, Chebyshev polynomials,
the general Jacobi polynomials, the Hermite and
the Laguerre polynomials and canonical
polynomials.

In this work, our keen interest is to construct a
new class of orthogonal polynomials and employ
same to formulate CTHLMM which shall produce
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the same results as the other

polynomials.

existing

In what follows, we shall construct a set of
polynomials valid in interval [-1, 1] with respect to

weight function W(x) = x> —1.

CONSTRUCTION OF THE BASIS FUNCTION

Let the functionq,(X), the quantity to be
evaluated be defined as:

n

q,(x) = > Cx" (2a)
r=0

do (X) =1

0,(X) = x

1
d,(x) = Z(5X2 -1
1._.,
s (X) = Z(7X - X)
q,(x) = %(21x4 —14x% +1)
s (X) = %(33X5 —30x° +5X)
e (X) = 6—14(429x6 —495x* +135x* —b)

g, (x) = 6—14(715x7 —1001x° +385x°® — 35X)

s (X) = %(2431x8 —4004x° +2002x* —308x* +7)
o (X) = %(419%9 —7956x" +4914x° —1092x° + 63X)

Uyo(X) = 5% (29393x'% — 62985x° + 46410x° —13650x" +1365%° — 21)
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on the real interval [a, b] where ¢, (X) must
satisfy the orthogonal property:

< 0 (0,0, (%) > = [ W00, ()d, (X)dx

=0, m#n
(2b)
For the purpose of constructing the basis
function, we adopt the approach discussed

extensively in Adeyefa and Adeniyi (2015) and
use additional property (the normalization)

g, =1 where our weight function is defined

asw(x) = x> —1.

Defining (2a) over the interval [-1, 1] and using
(2) yields:

©)
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In the spirit of Golub and Fischer (1992), equation (3) must satisfy three-term recurrence relation:
C; p(t) = (t _aj)pj—l(t)_bj pj_z(t)’

1=12,.., p—l(t) =0, p, )= Po

where b, ¢;>0for j >1 (b, is arbitrary).

Cj p(t) = (n + 3) I:)n+1 (X)!
(t—2a;)p;.(t) =(2n+3)xP, (x),
byp;,(t)=nP,,(x),n=12,..

The recursive formula for this class orthogonal polynomial, say ADEM-B orthogonal polynomial is
therefore given as:

P.1(X) = ——[(2n+3)xP, (X) P, , (X))
n+3
n>1 B(x)=1 P (X) =X

In the next section, these polynomials shall be employed to construct the proposed CTHLMM.

DEVELOPMENT OF THE METHOD

We proposed an approximate solution to (1) in the form:

s+k-1
y(x)= > a.q,(x) (@)
r=0
where s and k in (4) are points of interpolation and collocation respectively. Transforming q,(x) to interval
2X —=2x_—ph
[0, 1], we have X = —h“p , Where p varies as the method to be developed. In this case, p = 2.
p

1
The procedure involves interpolating (4) at points s = O,E and collocating the second derivative of (4) at

1183

points k = 0, Z,E ) Z 1,2. The a,, r = 0(1)7 from the resulting system of equations are obtained as:
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a, = 341 hzfn—ﬁhzf 1 ﬁh 2 f - 23h 2 f 3 ﬂh f+l 1 hzfn+2—yn+2y 1
15120 315+ 1080 > 135 . 5040 7560 nes
a, - 12343 . 17261 hf |+ 84913 hf - 7531 T 101609 hf
166320 72765 v, 83160 ne 10395 e, 166320
3191
———h*f_, -2y +2
582120 " yng
a, - 161 , - 2048  , L+ 2048hzf - 2048h 2t +4—8h2 f o 103 hf
1485 3465 e, 1485 e 1485 e, 55 10395
a, - 107 ) 37888hzf L+ 3712 hf | _1024hzf L+ 6112, , » 1213 hef (5)
1001 63063 n+; 3003 vy 715 e, 9009 105105
a4=—151 hzfn—@hzf l+@h f 1—@h f 3+£h2frHl 23 hzfm2
2457 819 e, 351 > 351 e 01 2457
a,= 14 hef - 128 hf | 112 - 128 - 68  , 4 274 hf
1485 2079 nes 1485 n+§ 7425 e, 1485 51975
_ 256 hof o+ 4096 4096 4096 912 256 he f
° 19305 " 45045 n+§ 19305 n+§ 19305 n+§ 6435 "' 135135 7
512 , 16384 4096 16384 1024 512 2
a; =— h fn 1 2TEAAC SR — 3 EnAC n+l ———h n+2
45045 315315 "*z 45045 e 225225 v, 45045 1576575
Substituting (5) into (4) yields the continuous implicit method:
1 13
y() =, ()Y, +@, ()Y ; +h*(B () f,,) k=0,",7,>12 (6)
3 ne 4 2 4
. : 1 : . .
Evaluating equation (6) at X = Xp+m, mzz ,— 1,2 yields the discrete equations:
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y 1:—ih2f (1812, l—ihzf 1—ih2f 3+ih2 .
.1 20880 n 6720 1 2560 1 960 310240 n+
4 4 4
1 2 1 1
= h%f 4y 4=
230080 n+22'n"2) 1
2
y 3:—131 h2fn+—223 h?t 1+—397 h?t 1+Lh2 3——17 h2fn1
1,3 61440 6720 .1 7680 1 960 3 30720 n+
* 4 0
1 2y 1,3
230080 n+2 2'n"2Y 1
n+—
y oo tpzg Ly (B L0 1o
n+l 240 n 15 1120 115 3 240 ¢l ol
2
yn+2=£h2fn—@h2f 1+@h2f 1—gh2f 3+@h2 n+l+£h2fn+2—3yn+4y
20" vt e 1 ISt 3 420 N

To develop the block method from the continuous scheme, we adopt the general block formula proposed
in Shampine and Watts (1969) in the normalized form given as:

A®Y, =ey, +h"“df (y,)+h""bF(y,) )

In the spirit of Baker and Keech (1978), a block-by-block method is a method for computing vectors
Yl,Yz,... in sequence. Equation (8) is applied in a block-by-block fashion.

113
Evaluating the first derivative of (6) at X = Xn4j, | = O,Z,E,Z 1,2 to obtain the first derivative equations
(FDEs). Substituting the resulting FDEs and equation (7) into (8) and solving simultaneously gives a block
formulae
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20017 - 715 o 2509 - 31 » 1123 -
Yn+>=1o00240" 'n " 28224 1 161280 1 " 2032" ' 3 eas120" 'net
4 n+— n+— n+Z
107 2 1
*9031680" n+2 tgYn"*Yn
yn+£:£ 2fn+ﬂh2f L _ﬁhzf 1 T+ 2 3_ih2fn+l
, 10080 4410 11008 1 630 3 10080
4 4
1 2 1
+Mh fn+2+5ynh+yn
3_ 8007 - 2979 - 153 » 15 > A
Yn+>=123360" 'n"1ses0" | 1 17920 ' 1 ' 248 3771680 N+l
4 n+— n+— n+—
2 4
9 2 3
+200704h fn+2+zynh+yn
Yio1= 191 0, 008,00 160 32,00 1,20 1 o0yl
n+lo2520° no2205 1 315 1 315 L3 252 n+loq7640  n+2 TN 0N
4
158 , 2816 o 1376 » 256 5 764 20 -
Voio=oooh®f —oh%f T —hff SR e hf “—h%f 42y hty,
"+27315° n 2205 1 315 1 63 3 315 o+l 441 n+2
3881 599 221 1 287 3 -
Y 1726080 0 T2500™ 1 10200 1 F18™ 323040 n+1 ¥ 35840 "ne2 TV
n+z n+— n+— n+z
- 227 37 19 1 1 1 .
Y=o hl bt e hf e oht g —Tohf et ey
,,1 2880 n 105 1360 1 45 3 160 20160
4 4
y :ﬂhfn+£hf G290 3y 3—£hfn+l+ihfn+2+y'n
,,375120 0 280 1 640 1 20 3 2560 35840
4 2 4
Ty B 2y B T
Jn+17g0'n"45" 1715 1745 379 ne1Un
4
- 47 512 512 512 28 73 -
yn+2=Ehfn—Ehf l-i-Ehf E—Ehf 3+€hfn+1+Ehfn+2+yn
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Equation (9) is our desired block method of which
its basic properties shall be discussed in the next
section.

ANALYSIS OF THE CTHLMM

Order and Error Constant

Following Henrici (1962), the approach adopted in
Fatunla (1991, 1994) and Lambert (1973), we
define the local truncation error associated with
equation (9) by the difference operator:

k
LLy(9: b= Y- lar,y(x, + i) =h* 3, £ (x, + )]
=0
(10)
where y(X) is an arbitrary function, continuously

differentiable on [a, b]. Expanding (10) in Taylor
series about the point x, we obtain the expression:

LIy(x); ] =Coy(x) + Chy' (x) + C,h*y" () +...+ C, sh PPy P2 (x)

where the C, , C,, C,,C,,... are obtained as:

B 1&.
Cl:ZJaJ’C2=§Z£J2aJ’
L

& S
Co =g 24" —a@-D@-22 4;i™
= j=1

According to Lambert (1973), equations (7) and
(9) are of order p if:

¢ =C=C,=..C,=C,,=0and C_, =0

The C, ., #0 is called the error constant and

Cp+2hp+2yp+2 (x,) is the principal local truncation

error at the point X, .

Thus, equations (7) and (9) are all of order 6 with
the error constants:
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347 -1 -19 —-143

C —
Pr2 [7927234560 30965760 528482304 1032192

and,

-1637 -31 -33 -1
7927234560 61931520 41943040 967680
-17 —-143 -29
120960 99090432 30965760
-5 -1 -5
| 3670016 1935360 12096

p+2

respectively.

Zero Stability of the CTHLMM

According to Lambert (1973), a linear multistep
method is said to be zero-stable if no root of the

first characteristic polynomial o(R) has modulus

greater than one and if every root of modulus one
has multiplicity not greater than the order of the
differential equation.

To analyze the zero-stability of the method, we
present (9) in vector notation form of column

e=(e,...e,), d=(d,...d,)",

ym :(yn+l"'yn+r)T ! F(ym):(fml“' fn+r )T
and matrices A=(3;) , B=(l;).

vectors

Thus, equation (9) forms the block formula:

0 _ 1
A"y, =hBF(y,)+ Ay, +hdf (11a)

where h is a fixed mesh size within a block. The
first characteristic polynomial of the hybrid block
method (9a) is given by:
p(R) = det(RA® — AY) (11b)

where:
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100 00000O0TO00 0
01 0000O0O0TO 0O 0
001000O00O0TO0DO
0001000000 0
, /0000100000 , |0
A = s A =
000O0O0100TU00 0
000O0O0OO0OT1@0O00 0
000O0OOOT1G00 0
000O0O0OOOOT1O 0
000O0O0OO0UOT O 1 0
0
715 —-2509 31  —1123 107
28224 161280 4032 645120 9031680
461 ~29 11 —41 1
4410 1008 630 10080 35280
2979 153 15  —477 9
15680 17920 448 71680 35280
608 16 32 1 1
2205 315 315 252 17640
~2816 1376 —256 764 20
B_| 2205 315 63 315 441
599  -221 1 287 3
2520 1920 18 23040 35840
g ' 1 -1 1
105 360 45 160 20160
® 129 3 -39 3
280 640 20 2560 35840
& 2 1 7
45 15 45 90
-512 512 -512 28 73
105 45 45 5 315
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0000 27 450000
1290240
0000 X 50000
10080
0000 997 450000
143360
0000 2 90000
2520
o000 X 90000
d- 315
0000 8 450000
46080
0000 22 00000
2880
0000 0000
5120
0000 -~ 00000
90
o000 2 900000
45

Substituting A’ and A" in (11b), we obtan pP(R)=R*(R—1)* which implies that
R =R,..=R; =0, Ry =R, =1.

According to Fatunla (1988, 1991), the our block method equation are zero-stable since from p(R) =0

satisfies ‘Rj‘ <1, j =1 and for those roots with ‘RJ—‘ =1, the multiplicity does not exceed two.

Region of Absolute Stability of the Main Methods

For the region of absolute stability, the following definitions are considered. Given the stability
polynomial:

7(z,h)= p(z) -~ ho(2) = 0 (12)

— df
where h=h?1% and 1 = — are assumed constants.

y
The scheme (7) is said to be absolutely stable if for a given H all the roots Z; of (12) satisfy |ZS| <1,

s=1,2,...n, where h=ah.

Definition: The region R of the complex H-plane such that the roots of %(Z,H)z 0 lies within the unit

circle whenever h lies in the interior of the region is called the region of absolute stability.
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Remark: Let R be the boundary of the regionR. Since the roots of the stability polynomial are

continuous functions of H H will lie on R when one of the roots of the E(Z,H):O lies on the
boundary of the unit circle. Thus we define (12) in terms of Euler's number, exp i€, as follows;

7(exp(i6),h) = p(ep(i6) —ho(ep(i6)) = 0 (13)

So that, the locus of the boundary ‘R is given by:

cooy _ PEY)
h(@) - O_(eie)

From (7a), the boundary of the region of absolute stability is:

(14)

€0s 260 +isin 29—4cos;¢9—4isin;9+3

h(9) =

©) 19 178 1 178. . 1 269 1 269. . 1
———-——c0S-f—-—"——isiIh=0+—coS— @ +——isin-0
420 105 4 105 4 60 2 60
—Qcosge—Qisin§0+&cose+@isin9+£c0329+£isin29
15 4 15 4 120 120 420 420

The region of absolute stability (RAS) is shown in Figure 1.

Figure 1: RAS of CTHLMM.

Consistency of the Method

According to Lambert (1973), a linear multistep method is said to be consistent if it has order at least one.
Owing to this definition, equations (7) and (9) are consistent being of order 6.
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Convergency of the Method

According to the theorem of Dahlquist, the necessary and sufficient condition for a LMM to be convergent
is to be consistent and zero stable. Since CTHLMM satisfies the two conditions hence its convergence.

NUMERICAL EXPERIMENT
Problem 1 (Source: Ramos (2016))

Consider the nonlinear problem given by:

v = x(y)2 =0,y(0) =1,y (0) = %,h — 0.0025

2+X

. 1
E | : =1+=In(=—=
xact Solution :y(x) =1+ 5 n(2—x)

Problem 2 (Source: Ramos (2016))

Consider the initial value problem given by:

8,4 ivmo1po 0l
3_

Exact Solution : y(x) _ X2
3x4

Problem 3 (Source: Ramos (2016))

y =y,y(0)=0,y (0)=-Lh=0.1

Exact Solution :y(x) =1—exp(x)

Problem 4 We consider in the example the Vanderpol’s oscillator problem

y'= 2cos.x—cos3 X—y'-y-— yzy',
y(0)=0, y'(0)=1, h=0.1

whose analytical solution is y(x) = sin x

The Pacific Journal of Science and Technology
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Table 1: Comparison of Absolute Errors for Problems 1, 2 and 3.

Problem 1 Problem 2 Problem 3
CHTLMM,p=6 BFMs , p=7 CHTLMM,p=6 BFMs , p=7 CHTLMM,p=6 BFMs , p=7
1.036e-16 3.11379e-12 1.0e-19 8.816e-18 2.21577e-15 NA
1.88173e-14 6.55987e-12 54e-18 2.15%-17 2.6701483e-13 2.427e-11
7.59512e-14 9.833331e-12 2.11e-17 3.346e-17 1.11119883e-12 4.001e-11
1.996016e-13 2.17263e-11 4.14e-17 4.510e-17 2.19958134e-12 5.746e-11
4.579197e-13 3.57048e-11 7.12e-17 5.721e-17 3.69292148e-12 7.741e-11
8.490233e-13 4.85912e-11 1.049e-16 6.497e-17 5.33475937e-12 9.517e-11
1.5073329¢-12 1.30979¢-10 1.47e-16 7.089%e-17 7.13715806e-12 1.221e-10
2.4037899e-12 2.31339e-10 1.926e-16 7.993e-17 8.94144724e-12 1.604e-10
3.7759564e-12 3.28627e-10 2.457e-16 8.829%¢-17 1.06221891e-11 2.013e-10
5.5675167e-12 1.33465e-9 3.018e-16 9.648e-17 1.213293195e-11 2.466e-10

Table 2: Comparison of Exact Solution and CHTLMM for Problem 4.

X Exact Approximation Error
0.1 0.09983341664682815231 0.09983341664682878065 6.28343e-16
0.2 0.19866933079506121546 0.19866933079518066233 1.1944687¢-13
0.3 0.29552020666133957511 0.29552020666179674793 4.5717282e-13
04 0.38941834230865049167 0.38941834230978998795 1.13949628e-12
0.5 0.47942553860420300027 0.47942553860666947549 2.46647522¢-12
0.6 0.56464247339503535720 0.56464247339927031006 4.23495286e-12
0.7 0.64421768723769105367 0.64421768724460349170 6.91243803e-12
0.8 0.71735609089952276163 0.71735609090949508420 9.97232257e-12
0.9 0.78332690962748338846 0.78332690964 151488105 1.403149259¢-11
1.0 0.84147098480789650665 0.84147098482618172915 1.82852225¢e-11

CONCLUSION 2. Awoyemi, D.O. 1991. “A Class of Continuous

An efficient and accurate numerical algorithm

based on

the collocation and interpolation

techniques has been presented with a new class
of polynomials as trial function. The CTHLMM
conveniently handles both special and general

class of second order differential

equations.

Numerical examples were given to demonstrate
the applicability of the algorithm. The results in
Table 1 shows that CTHLMM of order p=6
compares favorable well with the BMHg of order 7.
Table 2 compares the analytical solution and the
exact solution.
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