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ABSTRACT 
 
In this paper, we show that the result of Adomian 
Decomposition Method (FDM) and Finite 
Difference Method (FDM) are in agreement with 
each other, and the result of FDM gets better as 
the step size reduces. The two methods are 
applied to a single linear, inhomogeneous 
equation with different step size. The result shows 
that the methods are reliable, accurate and 
converges rapidly to the desired result. A smart 
3D cubic spline-fit of the three data set using 
Maple shows the same result. 
  

 (Keywords: Adomian decomposition method, finite 
difference method, second order non-homogenous 

differential equation) 
 
 
INTRODUCTION 
 
It is often difficult to find a closed form solution to 
many differential equations especially the 
nonhomogeneous linear ordinary and partial 
differential equations. Nonetheless, there are 
many methods for finding approximate solutions. 
ADM is a recent, ingenious method for solving 
nonlinear functional equation of various kinds. It 
has been used in to solve a wide class of 
stochastic and deterministic problems involving 
nonlinear and integral equations.  
 
ADM provides a solution as an infinite series in 
which each term can be determined, Some of the 
literatures on ADM include [2,3,4,5] In FDM, the 
problem is discretized and the solution given at 
interval, some existing literatures on FDM include 
[1,5 ].  
 
We shall consider equation of the form: 
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THE ADOMIAN DECOMPOSITION METHOD 
(ADM) 
 
Following the analysis by Adomian [3] (1) exist 
and satisfies the Lipchitz condition and is written 
in operator form as: 
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The inverse operator: 
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is a twofold integral. Taking L

-1
 on both sides of 

(2) and imposing and boundary condition we 
obtain:  
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y(x) is given by infinite series of components: 
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and the nonlinear function f(x,y) by an infinite 
series of the form: 
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where the component )x(y
n

 of the solution y(x) 

will be determined recurrently and the Adomian 
polynomial An  is given as: 
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n = 0, 1, 2, ... 
 
on substituting (5) and (6) in (4), we obtain: 
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Each term of (5) is given by the recurrent relation: 
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The solution of (1) will be approximated by series 
of the form: 
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FINITE DIFFERENCE METHOD (FDM) 
 
FDM are the implicit or the explicit relations 
between the derivatives and the function values  
at the adjacent mesh points. The mesh points on 
[a,b] may be defined as: 
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For a boundary value problem, FDM is applied by 
replacing the differential equation at each mesh 
point by difference equations. Incorporating the 
boundary conditions in the difference equation 
and solving the resulting system of algebraic 
equations. This gives the approximate numerical 
solution of the boundary value problem (1).  
 
The exact value of y(x) at xj is denoted by Yj and 
its approximate value by yj using Taylors series: 
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Assuming the continuity of )(y
j

  and )(y
j

iv   

and neglecting 0(h
2
) terms in (11) and (12) and 

substituting in (1) gives a system which is given 
in matrix notation as: 
 
Ay =   b                                                       (13) 
 
where b, y are n x 1 matrices and A is a 
tridiagonal square matrix. The solution for y in 
(13) gives the finite difference approximation of 
(1). 
 
 
APPLICATION AND RESULT 
 
Example 
 
Consider 

4131591.143)5(y,1)0(y,yxy    (14) 

 
(i) Applying ADM to (14), we obtain: 
 
Ly = x + y                                             (15) 
 
operating L

-1
 on both sides of (15) and imposing 

the initial condition, we obtain: 
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The ADM introduces a recursive relation: 
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In this order we obtain:  
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See Table 1 for results. 
 

TABLE 1  
At h = 0.5 

x     Exact ADM FDM 

0.00 1.00000000 1.00000000 1.00000000 

0.50 1.14872127 1.14872134 1.19396704 

1.00 1.71828183 1.71828175 1.81142584 

1.50 2.98168987 2.98168921 3.13174110 

2.00 5.38905610 5.38905621 5.60999162 

2.50 9.68249396 9.68249416 9.99074005 

3.00 17.0855369 17.0855370 17.4941735 

3.50 29.6154520 29.6154556 30.1211503 

4.00 50.5981500 50.5981522 51.1534147 

4.50 85.5171313 85.5171356 85.9740328 

5.00 143.413162 143.413162 143.413159 

 
 
 
(ii) By FDM, the discretized scheme for (14) is 
given as: 
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With step size of 0.5 (17) becomes: 
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The solution of (18) is of the form (13) which is a 
linear nonhomogeneous system with: 
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where p = -2.25, and  
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From (13) y  =  A

-1
 b 

 
The augmented coefficient 9x10 matrix is: 
  

 
10x9

bA                                                   (19) 

 
In echelon form Maple 14 reduces (19) to the 
form: 
  

  10x9CI  

 
Where I is and identify 9x9 matrix and C = yj, j = 
1, 2, ...,9, is 9x1 matrix given as: 
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Table 1 compares the result obtained using ADM 
and FDM with exact solution of (14). 
 
Example 
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By FDM, the discretized equivalent of (20) with  
h = 0.1 is given as: 
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The system (21) has p = -2.01 
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Table 2 gives a similar result obtained using ADM, 
FDM and exact solution at h = 0.1. 

 
CUBIC SPLINE FIT OF TABLE 1 DATA 
 
Taking the data point at h = 0.5 as shown in 
Table 1, the cubic spline fit of Exact solution, 
ADM and FDM are shown in 3D plot using Maple 
in Figure1, Figure 2, and Figure 3, respectively.  
 
The cubic spline fit is such that (i) f(x) is a linear 
polynomial outside the interval [0,5], (ii) f(x) is 
cubic polynomial in each of the subinterval and 

(iii)    xfandxf   are continuous at each point. 

Since  we took equally-spaced valued of x 
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integrating twice, we obtain: 
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and k are determined by substituting the 

values of y = f(x) at .xandx
i1i

 Thus 

 

 





 
i!3

h
ih

1
i1

xfy
2

   

 
and  
 

 





 
 1i!3

h
1ih

1
i2

xfy
2

 

 
TABLE 2 
At h = 0.1 

x     Exact ADM FDM 

0.00 1.00000000 1.00000000 1.00000000 

0.10 1.00507092 1.00517094 1.00513610 

0.20 1.02140276 1.02140284 1.02132356 

0.30 1.04985881 1.04985881 1.04972425 

0.40 1.09182470 1.09182465 1.09916221 

0.50 1.14872128 1.14872134 1.14843635 

0.60 1.22211880 1.22211874 1.22173487 

0.70 1.31375271 1.31375277 1.31325074 

0.80 1.42554093 1.42554104 1.42489912 

0.90 1.44960311 1.44960333 1.55879649 

1.00 1.71828183 1.71828108 1.71828210 
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substituting 
i2i1

and  in (22) and writing 
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To impose the condition of continuity of  xf  , we 

set: 
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i = 1 to  n – 1 (in this article i = 1 to 9. For 

,n0
xxandxx   we have: 
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(24) and (25) gives (n+1) equations in (n+1) 
unknowns. Solving for Mi and substituting in (23) 
we get the concerned cubic spline. In this article 
this was taken care of by Maple. 
 
 
CONCLUSION 
 
Table 1 and Table 2 have shown that ADM and 
FDM are not in total disagreement with each 
other. FDM gives result closer to that of exact 
solution as the step size decreases.  
 
Also, the cubic spline fit of the three data set on 
the same interval has continuous derivatives 

which makes the 3D graph of the solution 
function appear smooth. Figures 1 - 3 have the 
same shapes and sizes that ensured curvature 
continuity. This has further illustrated that 
although the data set of ADM and FDM appeared 
slightly different from the analytical solution, their 
cubic spline fit are the same. 
 
 
 

 
Figure 1: 3D Cubic Spline Fit of Exact Solution. 

 
 
 
 
 

 
Figure 2: 3D Cubic Spline Fit of ADM. 
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Figure 3: 3D Cubic Spline Fit of FDM. 
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